Electrochemical Determination of Kynurenine Pathway Metabolites—Challenges and Perspectives
Abstract
:1. Introduction
2. Circulation and Occurrence of KP Metabolites in Biological Samples
3. Analytical Methods Used for Determination of KP Metabolites
Method | Biological Matrix | LOD [nM] | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
Kyn | Kyna | 3HKyn | 3HAA | AA | XA | QA | |||
HPLC-FLD | Plasma | 30.00 | 0.09 | - | - | - | - | - | [79] |
HPLC-FLD | Brain | - | - | - | 1.00 | 1.00 | - | - | [84] |
HPLC-FLD | Plasma, serum, liver | - | 26.00 | - | 32.00 | 7.00 | - | - | [38] |
HPLC-UV | Plasma, serum, liver | 24.00 | 53.00 | 22.00 | 65.00 | 72.00 | 49.00 | - | [38] |
UHPLC-ESI-MS/MS | Plasma | >11.52 | <16.69 | 69.58 | 25.43 | 13.85 | <5.85 | <146.00 | [34] |
UHPLC-ESI-MS/MS | Urine | <11.52 | 0.53 | <34.79 | <203.43 | 13.85 | <9.26 | 233.37 | [34] |
UHPLC-ESI-MS/MS | Peritoneal Fluid | 1.58 | 1.76 | 7.59 | 10.77 | 12.03 | 4.70 | 5.92 | [27] |
GC-ECNI-MS | Cell culture medium | 0.55 | 0.20 | - | - | 0.11 | 1.07 | 0.07 | [81] |
GC-ECNI-MS | Cerebrospinal fluid | - | - | - | - | - | - | 1.00 | [82] |
CEC-MS/MS | Plasma | 250.00 | 50.00 | - | - | 50.00 | - | 50.00 | [83] |
NCQDs-QPRTase | Serum | - | - | - | - | - | - | 651.00 | [85] |
Fluorometry | Urine | - | n.c. | - | - | - | - | - | [86] |
Spectrophotometry | Urine | - | - | - | - | - | 48,740.31 | - | [87] |
ELISA | Plasma, serum, urine, cell culture supernatants | ≥40.00 | ≥3.17 | - | - | - | - | ≥35.90 | [*] |
4. Electrochemical Detection of KP Metabolites after Chromatographic Separation
5. Developments in Electrochemical Sensors for the Determination of KP Metabolites
6. Interferences
- Influence of Trp on Kyn signal
- Overlapping signals from 3HKyn and 3HAA
- Influence of Trp on AA signal
- Interferences delivered by Trp metabolites formed in other pathways
- Effect of amino acids
- Interferences from uric acid (UA), ascorbic acid (Vit C), and dopamine (DOP)
- Dilution of the sample;
- Sample pre-treatment by SPE
- Protein removal
- Limiting access of the interfering compounds to the electrode surface
- Modification/functionalization of the working electrode surface to improve selectivity towards KP metabolites
7. Comparison of Electrochemical Sensors to LC-Based Methods
8. Future Research Directions
- Miniaturization and development of ultra-small electrodes (ultramicroelectrodes) for monitoring of KP metabolites directly in the living tissue in vivo or from a single biological cell in vitro.
- Development of sensors delivering reliable measurements within a few minutes of analysis period, using blood sample from a finger prick without additional pretreatment steps.
- Development of portable electrochemical analyzers for a near-patient clinical blood or urine testing.
- Design and fabrication of wearable electrochemical sensors for non-invasive, continuous real-time monitoring of tracking dynamic changes in concentrations of KP metabolites within body fluids, e.g., after drug treatment.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takikawa, O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem. Biophys. Res. Commun. 2005, 338, 12–19. [Google Scholar] [CrossRef]
- Marszalek-Grabska, M.; Walczak, K.; Gawel, K.; Wicha-Komsta, K.; Wnorowska, S.; Wnorowski, A.; Turski, W.A. Kynurenine emerges from the shadows–Current knowledge on its fate and function. Pharmacol. Ther. 2021, 225, 107845–107872. [Google Scholar] [CrossRef]
- Badawy, A.; Namboodiri, A.M.; Moffett, J.R. The end of the road for the tryptophan depletion concept in pregnancy and infection. Clin. Sci. 2016, 130, 1327–1333. [Google Scholar] [CrossRef] [Green Version]
- Mellor, A.L.; Lemos, H.; Huang, L. Indoleamine 2,3-Dioxygenase and Tolerance: Where Are We Now? Front. Immunol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.B. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. 2017, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, L.V.; Neyens, D.; Ramsay, G.; Taylor, M.P.; Cantrell, D.A. Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Novikov, O.; Wang, Z.; Stanford, E.A.; Parks, A.J.; Ramirez-Cardenas, A.; Landesman, E.; Laklouk, I.; Sarita-Reyes, C.; Gusenleitner, D.; Li, A.; et al. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells. Mol. Pharmacol. 2016, 90, 674–688. [Google Scholar] [CrossRef] [Green Version]
- Bock, K.W. Aryl hydrocarbon receptor (AHR) functions: Balancing opposing processes including inflammatory reactions. Biochem. Pharmacol. 2020, 178, 114093. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Paluszkiewicz, P.; Parada-Turska, J.; Oxenkrug, G.F. Kynurenic Acid in the Digestive system—new Facts, new challenges. Int. J. Tryptophan Res. 2013, 6, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Morita, T.; Saito, K.; Takemura, M. 3-Hydroxyanthranilic acid, an L-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-γ. Ann. Clin. Biochem. 2001, 38, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaher, S.S.; Germain, C.; Fu, H.; Larkin, D.F.P.; George, A.J.T. 3-Hydroxykynurenine Suppresses CD4+ T-Cell Proliferation, Induces T-Regulatory-Cell Development, and Prolongs Corneal Allograft Survival. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2640–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillemin, G.J. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012, 279, 1325–1365. [Google Scholar] [CrossRef]
- Malina, H.; Richter, C.; Frueh, B.; Hess, O.M. Lens epithelial cell apoptosis and intracellular Ca2+ increasein the presence of xanthurenic acid. BMC Ophthalmol. 2002, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dhakar, N.K.; Caldera, F.; Bessone, F.; Cecone, C.; Pedrazzo, A.R.; Cavalli, R.; Dianzani, C.; Trotta, F. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr. Polym. 2019, 224, 115168–115176. [Google Scholar] [CrossRef] [PubMed]
- Chobot, V.; Hadacek, F.; Weckwerth, W.; Kubicova, L. Iron chelation and redox chemistry of anthranilic acid and 3-hydroxyanthranilic acid: A comparison of two structurally related kynurenine pathway metabolites to obtain improved insights into their potential role in neurological disease development. J. Organomet. Chem. 2015, 782, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Sathyasaikumar, K.V.; Tararina, M.; Wu, H.Q.; Neale, S.A.; Weisz, F.; Salt, T.E.; Schwarcz, R. Xanthurenic Acid Formation from 3-Hydroxykynurenine in the Mammalian Brain: Neurochemical Characterization and Physiological Effects. Neuroscience 2017, 367, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147. [Google Scholar] [CrossRef]
- Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [CrossRef]
- Badawy, A.A.-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015, 35, e00261. [Google Scholar] [CrossRef] [PubMed]
- Bohár, Z.; Toldi, J.; Fülöp, F.; Vécsei, L. Changing the face of kynurenines and neurotoxicity: Therapeutic considerations. Int. J. Mol. Sci. 2015, 16, 9772–9793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opitz, C.A.; Wick, W.; Steinman, L.; Platten, M. Tryptophan degradation in autoimmune diseases. Cell. Mol. Life Sci. 2007, 64, 2542–2563. [Google Scholar] [CrossRef] [PubMed]
- Sheipouri, D.; Braidy, N.; Guillemin, G.J. Kynurenine pathway in skin cells: Implications for UV-induced skin damage. Int. J. Tryptophan Res. 2013, 5, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Mehraj, V.; Routy, J.-P. Tryptophan Catabolism in Chronic Viral Infections: Handling Uninvited Guests. Int. J. Tryptophan Res. 2015, 8, IJTR.S26862. [Google Scholar] [CrossRef]
- Tan, V.X.; Guillemin, G.J. Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis. Front. Neurosci. 2019, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sadok, I.; Jędruchniewicz, K.; Rawicz-Pruszyński, K.; Staniszewska, M. UHPLC-ESI-MS/MS Quantification of Relevant Substrates and Metabolites of the Kynurenine Pathway Present in Serum and Peritoneal Fluid from Gastric Cancer Patients—Method Development and Validation. Int. J. Mol. Sci. 2021, 22, 6972. [Google Scholar] [CrossRef]
- Erabi, H.; Okada, G.; Shibasaki, C.; Setoyama, D.; Kang, D.; Takamura, M.; Yoshino, A.; Fuchikami, M.; Kurata, A.; Kato, T.A.; et al. Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Wang, J. Portable electrochemical systems. TrAC Trends Anal. Chem. 2002, 24, 226–232. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Mohammadi, S.Z.; Azimzadeh, M.; Zhang, K.; Van Le, Q.; Yamauchi, Y.; Jang, H.W.; Shokouhimehr, M. Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC Adv. 2020, 10, 30481–30498. [Google Scholar] [CrossRef]
- Ramachandran, R.; Chen, T.-W.; Chen, S.-M.; Baskar, T.; Kannan, R.; Elumalai, P.; Raja, P.; Jeyapragasam, T.; Dinakaran, K.; Gnana Kumar, G. peter A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg. Chem. Front. 2019, 6, 3418–3439. [Google Scholar] [CrossRef]
- Özel, R.E.; Hayat, A.; Andreescu, S. Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine. Anal. Lett. 2015, 48, 1044–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadok, I.; Gamian, A.; Staniszewska, M.M. Chromatographic analysis of tryptophan metabolites. J. Sep. Sci. 2017, 40, 3020–3045. [Google Scholar] [CrossRef]
- Anesi, A.; Rubert, J.; Oluwagbemigun, K.; Orozco-Ruiz, X.; Nöthlings, U.; Breteler, M.M.B.; Mattivi, F. Metabolic profiling of human plasma and urine, targeting tryptophan, tyrosine and branched chain amino acid pathways. Metabolites 2019, 9, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Stevens, A.P.; Dettmer, K.; Gottfried, E.; Hoves, S.; Kreutz, M.; Holler, E.; Canelas, A.B.; Kema, I.; Oefner, P.J. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 401, 3249–3261. [Google Scholar] [CrossRef]
- Sadok, I.; Rachwał, K.; Staniszewska, M. Application of the optimized and validated LC–MS method for simultaneous quantification of tryptophan metabolites in culture medium from cancer cells. J. Pharm. Biomed. Anal. 2019, 176, 112805–112815. [Google Scholar] [CrossRef] [PubMed]
- Tömösi, F.; Kecskeméti, G.; Cseh, E.K.; Szabó, E.; Rajda, C.; Kormány, R.; Szabó, Z.; Vécsei, L.; Janáky, T. A validated UHPLC-MS method for tryptophan metabolites: Application in the diagnosis of multiple sclerosis. J. Pharm. Biomed. Anal. 2020, 185, 113246–113257. [Google Scholar] [CrossRef]
- Badawy, A.A.-B.; Morgan, C.J. Rapid Isocratic Liquid Chromatographic Separation and Quantification of Tryptophan and Six kynurenine Metabolites in Biological Samples with Ultraviolet and Fluorimetric Detection. Int. J. Tryptophan Res. 2010, 3, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Marrugo-Ramírez, J.; Rodríguez-Núñez, M.; Marco, M.-P.; Mir, M.; Samitier, J. Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer’s Disease. Biosensors 2021, 11, 20. [Google Scholar] [CrossRef]
- Kato, D.; Kamata, T.; Sumimoto, M. Electrochemical Detection of Tryptophan Metabolites via Kynurenine Pathway by Using Nanocarbon Films. Electroanalysis 2021. [Google Scholar] [CrossRef]
- Sadok, I.; Tyszczuk-Rotko, K.; Mroczka, R.; Kozak, J.; Staniszewska, M. Improved Voltammetric Determination of Kynurenine at the Nafion Covered Glassy Carbon Electrode –Application in Samples Delivered from Human Cancer Cells. Int. J. Tryptophan Res. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Sadok, I.; Tyszczuk-Rotko, K.; Mroczka, R.; Staniszewska, M. Simultaneous voltammetric analysis of tryptophan and kynurenine in culture medium from human cancer cells. Talanta 2020, 209, 120574–120584. [Google Scholar] [CrossRef]
- Brooks, E.L.; Mutengwa, V.S.; Abdalla, A.; Yeoman, M.S.; Patel, B.A. Determination of tryptophan metabolism from biological tissues and fluids using high performance liquid chromatography with simultaneous dual electrochemical detection. Analyst 2019, 144, 6011–6018. [Google Scholar] [CrossRef] [PubMed]
- Kubicova, L.; Hadacek, F.; Bachmann, G.; Weckwerth, W.; Chobot, V. Coordination Complex Formation and Redox Properties of Kynurenic and Xanthurenic Acid Can A ect Brain Tissue Homeodynamics. Antioxidants 2019, 8, 476. [Google Scholar] [CrossRef] [Green Version]
- Karami, P.; Majidi, M.R.; Johari-Ahar, M.; Barar, J.; Omidi, Y. Development of screen-printed tryptophan-kynurenine immunosensor for in vitro assay of kynurenine-mediated immunosuppression effect of cancer cells on activated T-cells. Biosens. Bioelectron. 2017, 92, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kashyap, S.; Kumar, S.; Abraham, S.; Gupta, T.K.; Kayastha, A.M.; Malhotra, B.D.; Saxena, P.S.; Srivastava, A.; Singh, R.K. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosens. Bioelectron. 2017, 90, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; O’Hare, D.; Chao, I.-J.; Wei, H.-W.; Liang, Y.-F.; Liu, B.-D.; Lee, M.-H.; Lin, H.-Y. Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly (ethylene-co-vinylalcohol). Biosens. Bioelectron. 2015, 67, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Hoshikawa, M.; Dai, K.; Saito, H.; Suzuki, N.; Niwa, O.; Okada, M. ONO-2506 inhibits spike–wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation. Br. J. Pharmacol. 2013, 168, 1088–1100. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Zhang, Y.; Wang, F.; Chen, Z. Determination of tryptophan and kynurenine in human plasma by liquid chromatography-electrochemical detection with multi-wall carbon nanotube-modified glassy carbon electrode. Biomed. Chromatogr. 2011, 25, 938–942. [Google Scholar] [CrossRef]
- Mackay, G.M.; Forrest, C.M.; Stoy, N.; Christofides, J.; Egerton, M.; Stone, T.W.; Darlington, L.G. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur. J. Neurol. 2006, 13, 30–42. [Google Scholar] [CrossRef]
- Vaarmann, A.; Kask, A.; Mäeorg, U. Novel and sensitive high-performance liquid chromatographic method based on electrochemical coulometric array detection for simultaneous determination of catecholamines, kynurenine and indole derivatives of tryptophan. J. Chromatogr. B 2002, 769, 145–153. [Google Scholar] [CrossRef]
- Li, J.; Li, G. Identification of 3-Hydroxykynurenine and Xanthurenic Acid and Quantitation of 3-Hydroxykynurenine Transaminase Activity Using HPLC with Electrochemical Detection. J. Liq. Chromatogr. Relat. Technol. 1998, 21, 1511–1525. [Google Scholar] [CrossRef]
- Iwahashi, H.; Ishii, T. Detection of the oxidative products of 3-hydroxykynurenine using high-performance liquid chromatography–electrochemical detection–ultraviolet absorption detection–electron spin resonance spectrometry and high-performance liquid chromatography–electrochemi. J. Chromatogr. A 1997, 773, 23–31. [Google Scholar] [CrossRef]
- Malone, M.A.; Zuo, H.; Lunte, S.M.; Smyth, M.R. Determination of tryptophan and kynurenine in brain microdialysis samples by capillary electrophoresis with electrochemical detection. J. Chromatogr. A 1995, 700, 73–80. [Google Scholar] [CrossRef]
- Pearson, S.J.; Reynolds, G.P. Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci. Lett. 1992, 144, 199–201. [Google Scholar] [CrossRef]
- Beal, M.F.; Matson, W.R.; Storey, E.; Milbury, P.; Ryan, E.A.; Ogawa, T.; Bird, E.D. Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J. Neurol. Sci. 1992, 108, 80–87. [Google Scholar] [CrossRef]
- Pearson, S.J.; Reynolds, G.P. Determination of 3-hydroxykynurenine in human brain and plasma by high-performance liquid chromatography with electrochemical detection. Increased concentrations in hepatic encephalopathy. J. Chromatogr. 1991, 565, 436–440. [Google Scholar] [CrossRef]
- Swartz, K.J.; Matson, W.R.; MacGarvey, U.; Ryan, E.A.; Beal, M.F. Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromatography with fluorometric and coulometric electrode array detection. Anal. Biochem. 1990, 185, 363–376. [Google Scholar] [CrossRef]
- Heyes, M.P.; Quearry, B.J. Quantification of 3-hydroxykynurenine in brain by high-performance liquid chromatography and electrochemical detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1988, 428, 340–344. [Google Scholar] [CrossRef]
- Fukunaga, M.; Yamamoto, Y.; Kawasoe, M.; Arioka, Y.; Murakami, Y.; Hoshi, M.; Saito, K. Studies on tissue and cellular distribution of indoleamine 2,3-dioxygenase 2: The absence of IDO1 upregulates IDO2 expression in the epididymis. J. Histochem. Cytochem. 2012, 60, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Kanai, M.; Nakamura, T.; Funakoshi, H. Identification and characterization of novel variants of the tryptophan 2,3-dioxygenase gene: Differential regulation in the mouse nervous system during development. Neurosci. Res. 2009, 64, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, O.; Yoshid, R.; Kido, R.; Hayaishi, O. Tryptophan Degradation in Mice Initiated by Indoleamine 2,3-Dioxygenase. J. Biol. Chem. 1986, 261, 3648–3653. [Google Scholar] [CrossRef]
- Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood–Brain Barrier Transport of Kynurenines: Implications for Brain Synthesis and Metabolism. J. Neurochem. 1991, 56, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Goeden, N.; Notarangelo, F.M.; Pocivavsek, A.; Beggiato, S.; Bonnin, A.; Schwarcz, R. Prenatal Dynamics of Kynurenine Pathway Metabolism in Mice: Focus on Kynurenic Acid. Dev. Neurosci. 2017, 39, 519–528. [Google Scholar] [CrossRef]
- Pawlak, D.; Tankiewicz, A.; Matys, T.; Buczko, W. Peripheral distribution of kynurenine metabolites and activity of kynurenine pathway enzymes in renal failure. J. Physiol. Pharmacol. 2003, 54, 175–189. [Google Scholar]
- Hiratsuka, C.; Sano, M.; Fukuwatari, T.; Shibata, K. Time-dependent effects of L-tryptophan administration on urinary excretion of L-tryptophan metabolites. J. Nutr. Sci. Vitaminol. (Tokyo) 2014, 60, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Price, J.M.; Brown, R.R.; Peters, H.A. Tryptophan metabolism in porphyria, schizophrenia, and a variety of neurologic and psychiatric diseases. Neurology 1959, 9, 456–468. [Google Scholar] [CrossRef]
- Galla, Z.; Rajda, C.; Rácz, G.; Grecsó, N.; Baráth, Á.; Vécsei, L.; Bereczki, C.; Monostori, P. Simultaneous determination of 30 neurologically and metabolically important molecules: A sensitive and selective way to measure tyrosine and tryptophan pathway metabolites and other biomarkers in human serum and cerebrospinal fluid. J. Chromatogr. A 2021, 1635, 461775. [Google Scholar] [CrossRef]
- Kędzierski, W.; Sadok, I.; Kowalik, S.; Janczarek, I.; Staniszewska, M. Does the type of exercise affect tryptophan catabolism in horses? Anim. Int. J. Anim. Biosci. 2021, 15, 100377–100383. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, M.; Catizone, A.; Pompei, M.; Chiappini, L.; Curini, L.; Lagana, A. Determination of urinary tryptophan and its metabolites along the nicotinic acid pathway by high performance liquid chromatography with ultraviolet detection. Biomed. Chromatogr. 1990, 4, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Buczko, P.; Stokowska, W.; Górska, W.; Kucharewicz, I.; Pawlak, D.; Buczko, W. Tryptophan Metabolites via Kynurenine Pathway in Saliva of Diabetic Patients. Dent. Med. Probl. 2006, 43, 21–25. [Google Scholar]
- Baran, H.; Jellinger, K.; Deecke, L. Kynurenine metabolism in Alzheimer’s disease. J. Neural Transm. 1999, 106, 165–181. [Google Scholar] [CrossRef]
- Wang, L.-S.; Zhang, M.-D.; Tao, X.; Zhou, Y.-F.; Liu, X.-M.; Pan, R.-L.; Liao, Y.-H.; Chang, Q. LC-MS/MS-based quantification of tryptophan metabolites and neurotransmitters in the serum and brain of mice. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1112, 24–32. [Google Scholar] [CrossRef]
- Yamada, K.; Miyazaki, T.; Shibata, T.; Hara, N.; Tsuchiya, M. Simultaneous measurement of tryptophan and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 867, 57–61. [Google Scholar] [CrossRef]
- Tkaczuk-Włach, J.; Kędzierski, W.; Jonik, I.; Sadok, I.; Filip, A.; Kankofer, M.; Polkowski, W.; Ziółkowski, P.; Gamian, A.; Staniszewska, M. Immunomodulatory Factors in Primary Endometrial Cell Cultures Isolated from Cancer and Noncancerous Human Tissue –Focus on RAGE and IDO1. Cells 2021, 10, 1013. [Google Scholar] [CrossRef]
- Christen, S.; Thomas, S.R.; Garner, B.; Stocker, R. Inhibition by interferon-gamma of human mononuclear cell-mediated low density lipoprotein oxidation. Participation of tryptophan metabolism along the kynurenine pathway. J. Clin. Investig. 1994, 93, 2149–2158. [Google Scholar] [CrossRef] [Green Version]
- Bonda, D.J.; Mailankot, M.; Stone, J.G.; Garrett, M.R.; Staniszewska, M.; Castellani, R.J.; Siedlak, S.L.; Zhu, X.; Lee, H.; Perry, G.; et al. Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep. 2010, 15, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsuhashi, S.; Fukushima, T.; Tomiya, M.; Santa, T.; Imai, K.; Toyo’oka, T. Determination of kynurenine levels in rat plasma by high-performance liquid chromatography with pre-column fluorescence derivatization. Anal. Chim. Acta 2007, 584, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Gao, P.; Zhu, D. Optimization of Zn2+-containing mobile phase for simultaneous determination of kynurenine, kynurenic acid and tryptophan in human plasma by high performance liquid chromatography. J. Chromatogr. B 2010, 878, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix effects and application of matrix effect factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef] [Green Version]
- Naritsin, D.B.; Bonl, R.L.; Markey, S.P. Pentafluorobenzylation Method for Quantification of Acidic Tryptophan Metabolites Using Electron Capture Negative Ion Mass Spectrometry. Anal. Chem. 1995, 67, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Smythe, G.A.; Braga, O.; Brew, B.J.; Grant, R.S.; Guillemin, G.J.; Kerr, S.J.; Walker, D.W. Concurrent Quantification of Quinolinic, Picolinic, and Nicotinic Acids Using Electron-Capture Negative-Ion Gas Chromatography–Mass Spectrometry. Anal. Biochem. 2002, 301, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Chawdhury, A.S.M.M.R.; Shamsi, S.A.; Miller, A.; Liu, A. Capillary electrochromatography-mass spectrometry of kynurenine pathway metabolites. J. Chromatogr. A 2021, 1651, 462294–462308. [Google Scholar] [CrossRef]
- Cannazza, G.; Baraldi, M.; Braghiroli, D.; Tail, A.; Parenti, C. High-performance liquid chromatographic method for the quantification of anthranilic and 3-hydroxyanthranilic acid in rat brain dialysate. J. Pharm. Biomed. Anal. 2003, 32, 287–293. [Google Scholar] [CrossRef]
- Singh, R.; Kashayap, S.; Singh, V.; Kayastha, A.M.; Mishra, H.; Saxena, P.S.; Srivastava, A.; Singh, R.K. QPRTase modified N-doped carbon quantum dots: A fluorescent bioprobe for selective detection of neurotoxin quinolinic acid in human serum. Biosens. Bioelectron. 2017, 101, 103–109. [Google Scholar] [CrossRef]
- Mawatari, K.; Iinuma, F.; Watanabe, M. Fluorometric determination of urinary kynurenic acid by flow injection analysis equipped with a “bypass line”. Anal. Biochem. 1990, 190, 88–91. [Google Scholar] [CrossRef]
- Chen, C.-F.; Liu, T.-Z.; Lan, W.-H.; Wu, L.-A.; Tsai, C.-H.; Chiou, J.-F.; Tsai, L.-Y. Novel Spectrophotometric Method for the Quantitation of Urinary Xanthurenic Acid and Its Application in Identifying Individuals with Hyperhomocysteinemia Associated with Vitamin B6 Deficiency. Biomed Res. Int. 2013, 2013, 678476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, A.; Yang, Y.; Lee, Y.; Kim, M.S.; Park, Y.-J.; Jung, H.; Kim, T.-D.; Lee, H.G.; Choi, I.; Yoon, S.R. Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways. J. Clin. Med. 2019, 8, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Miao, P. Theoretical Background of Electrochemical Analysis. In Electrochemical Analysis of Proteins and Cells. SpringerBriefs in Molecular Science; Springer: Berlin, Germany, 2013; pp. 5–18. [Google Scholar]
- Muzyka, K.; Sun, J.; Fereja, T.H.; Lan, Y.; Zhang, W.; Xu, G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Methods 2019, 11, 397–414. [Google Scholar] [CrossRef]
- Maiyalagan, T.; Pasupathi, S. Components for PEM Fuel cells: An Overview. Mater. Sci. Forum 2010, 657, 143–189. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, B.; Zohrabi, P.; Shamsipur, M. Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 2018, 187, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Suprun, E.V.; Karpova, E.V.; Radko, S.P.; Karyakin, A.A. Advanced electrochemical detection of amino acids and proteins through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochim. Acta 2020, 331, 135289–135297. [Google Scholar] [CrossRef]
- Hamzah, H.H.; Zain, Z.M.; Musa, N.L.W.; Lin, Y.-C.; Trimbee, E. Spectrophotometric Determination of Uric Acid in Urine Based-Enzymatic Method Uricase with 4-Aminodiphenylamine Diazonium Sulfate (Variamine Blue RT Salt). J. Anal. Bioanal. Tech. 2013, S7, 011–016. [Google Scholar] [CrossRef]
- Kong, D.; Zhuang, Q.; Han, Y.; Xu, L.; Wang, Z.; Jiang, L.; Su, J.; Lu, C.-H.; Chi, Y. Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly(procaterol hydrochloride) modified glassy carbon electrode. Talanta 2018, 185, 203–212. [Google Scholar] [CrossRef]
- Pelletier, O. Determination of vitamin C in serum, urine, and other biological materials. J. Lab. Clin. Med. 1968, 72, P674–P679. [Google Scholar] [CrossRef]
- Harris, A.R.; Carter, P.; Cowan, R.; Wallace, G.G. Impact of Protein Fouling on the Charge Injection Capacity, Impedance, and Effective Electrode Area of Platinum Electrodes for Bionic Devices. ChemElectroChem 2021, 8, 1078–1090. [Google Scholar] [CrossRef]
- Downard, A.J.; Roddick, A.D. Protein Adsorption at Gl.assy Carbon Electrodes: The Effect of Covalently Bound Surface Groups. Electroanalysis 1995, 7, 376–378. [Google Scholar] [CrossRef]
- Beykal, B.; Herzberg, M.; Oren, Y.; Mauter, M.S. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes. J. Colloid Interface Sci. 2015, 460, 321–328. [Google Scholar] [CrossRef]
- Žurga, N.; Majer, D.; Finšgar, M. Pb(II) Determination in a Single Drop Using a Modified Screen-Printed Electrode. Chemosensors 2021, 9, 38. [Google Scholar] [CrossRef]
- Ferrari, A.G.-M.; Rowley-Neale, S.J.; Banks, C.E. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 2021, 3, 100032–100041. [Google Scholar] [CrossRef]
- Lipkowski, J. Challenges and opportunities of modern electrochemistry—a personal reflection. J. Solid State Electrochem. Vol. 2011, 15, 1673–1677. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef] [PubMed]
Method | Working Electrode | LOD [nM] | Application | Year | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kyn | Kyna | 3HKyn | 3HAA | AA | XA | QA | |||||
CA | anti-IgG-HRP-MUA/MU-AuEs | – | 0.02 a 0.39 b | – | – | – | – | – | Serum | 2021 | [39] |
EIS | anti-IgG-HRP-MUA/MU-AuEs | – | 0.04 a 0.28 b | – | – | – | – | – | Serum | 2021 | [39] |
SWV | NCE (sp3 = 16%) | 3800.00 | – | 14,000.00 | – | 10,000.00 | – | – | – | 2021 | [40] |
NCE (sp3 = 47%) | 1600.00 | 400.00 | 200.00 | 400.00 | 2400.00 | – | – | ||||
DPAdSV | Nafion/GCE | 5.10 (60 s) * | – | – | – | – | – | – | Cellular lysate Culturing medium from cancer cells | 2021 | [41] |
0.59 (600 s) * | – | – | – | – | – | – | |||||
DPV | Bi/BDDE | 30.00 | – | – | – | – | – | – | Culturing medium from cancer cells | 2020 | [42] |
HPLC-ECD | dGCE | 36.77 | – | – | – | 30.61 | 10.96 | – | Hippocampus and ileum tissues Blood | 2019 | [43] |
DPV | GCE | – | n.c. | – | – | – | n.c. | – | Phosphate buffer | 2019 | [44] |
CC-PSA | mAb-MWCNT -AuSPE | 0.50 | – | – | – | – | – | – | Culturing medium from cancer cells | 2017 | [45] |
DPV | QPRT-BSA -RGO-ITO | – | – | – | – | – | – | 6500.00 | Serum | 2017 | [46] |
AMP | MIPs/SPE | – | – | – | 19.98 | – | – | – | Urine | 2015 | [47] |
DPV | GCE | – | – | – | n.c. | n.c. | – | – | Phosphate buffer | 2015 | [16] |
HPLC-ECD | NCE | – | 0.20 ** | – | – | – | – | – | Culturing medium fromastrocytes | 2012 | [48] |
HPLC-ECD | MWCNT/GCE | 500.00 | – | – | – | – | – | – | Plasma | 2011 | [49] |
HPLC-ECD | – | – | – | 3.00 | 3.00 | – | 2.00 | – | Plasma | 2006 | [50] |
HPLC-ECD | – | 6.25 | 27.51 | 5.58 | 4.90 | 14.23 | 12.20 | – | Brain tissue | 2002 | [51] |
HPLC-ECD | GCE | – | – | n.c. | – | – | n.c. | – | Mosquito larval | 1998 | [52] |
HPLC-ECD | PGE | – | – | n.c. | – | – | – | – | Phosphate buffer | 1997 | [53] |
CEEC | CFE | 3.10 | 22.20 | 0.40 | 6.00 | 3.30 | 0.60 | - | Brain tissue | 1995 | [54] |
HPLC-ECD | – | – | – | n.c. | – | – | – | – | Brain tissue | 1992 | [55] |
HPLC-CEAS | – | n.c. | n.c. | n.c | – | – | – | – | Brain tissue | 1992 | [56] |
HPLC-ECD | GCE | – | – | n.c. | n.c. | – | – | – | Brain tissue | 1991 | [57] |
HPLC-CEAS | – | – | n.c. | – | – | – | – | – | Brain tissue | 1990 | [58] |
HPLC-ECD | GCE | – | – | 8.75 | – | – | – | – | Brain tissue | 1988 | [59] |
Biological Matrix | Concentration Range [µmol/L or µmol/kg] | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|
Trp | Kyn | Kyna | 3HKyn | 3HAA | AA | XA | QA | ||
Human serum * | 41.54–95.60 | 1.12–2.41 | 0.01–0.09 | 0.04–0.26 | 0.17–0.67 | 4.70–12.10a | 0.02–0.06 | 0.37–0.60 | [68] |
Human serum from gastric cancer patients | 5.15–109.56 | 0.20–1.41 | 0.01–0.12 | 0.02–1.80 | - | - | 0.03–0.27 | 0.07–0.15 | [27] |
Human serum from amyotrophic lateral sclerosis patients | 137.70–148.90 | 3.80–4.20 | - | - | - | - | - | 0.35–0.39 | [26] |
Horse plasma | 42.50–129.74 | 0.41–12.69 | 0.11–0.15 | 0.69–1.90 | - | - | 0.21–0.46 | - | [69] |
Rat plasma * | 35.90–42.30 | 1.50–1.70 | 0.04–0.05 | 0.04–0.06 | - | 0.04–0.06 | 0.03–0.04 | 0.30–0.41 | [65] |
Human peritoneal fluid from gastric cancer patients | 0.34–11.22 | 0.04–4.06 | 2.52–21.04 a | 0.02–3.20 | 0.16–2.03 | 0.02–0.43 | 0.02–0.16 | 0.01–1.75 | [27] |
Human cerebrospinal fluid * | 1.70–2.72 | 0.03–0.09 | 0.80–4.00 a | 1.80–7.60 a | <1.00 a | 2.60–6.80a | 0.30–2.30 a | 0.02–0.08 | [68] |
Human cerebrospinal fluid from amyotrophic lateral sclerosis patients | 4.80–5.20 | 0.21–0.25 | - | - | - | - | - | ~0.05 | [26] |
Human urine * | 6.37–25.00 | 2.40–9.13 | 23.18–45.50 | 28.44–47.11 | 35.29–53.59 | 1.46–14.60 | 25.85–33.66 | - | [70] |
Human urine from bladder cancer patients | 109.94–167.68 | 9.11–12.42 | 13.91–31.96 | 36.57–51.74 | 54.95–61.89 | 61.97–219.22 | 17.95–30.19 | - | [70] |
Human salvia * | 0.17–0.27 | 0.28–0.35 | 2.60–3.60 a | 4.80–6.20 a | 3.00–3.60 a | - | - | - | [71] |
Human hippocampus * | - | 10.10–13.70 b | 2.32–3.44 b | 4.52–6.02 b | - | - | - | - | [72] |
Human hippocampus from vascular encephalopathy patients | - | 12.85–13.67 b | 3.91–5.15 b | 8.32–9.72 b | - | - | - | - | [72] |
Human temporal cortex * | - | - | - | 40.14–539.66 | - | - | - | - | [55] |
Human temporal cortex from Huntington’s disease patients | - | - | - | 280.98–700.22 | - | - | - | - | [55] |
Human temporal cortex from Alzheimer’s disease patients | - | - | - | 182.86–548.58 | - | - | - | - | [55] |
Mice cerebral Cortex * | 120.07–127.39 | ~0.18 | ~0.07 | ~0.03 | - | - | - | - | [73] |
Mice hippocampus * | 137.05–201.97 | ~0.30 | ~0.12 | ~0.06 | - | - | - | - | [73] |
Rat kidney * | ~0.10 | 2.80–3.20 a | 0.75–0.89 | 0.28–0.33 | - | 0.11–0.16 | 0.40–0.46 | 0.19–0.26 | [65] |
Rat liver * | 0.04–0.05 | 5.70–6.70 a | 0.15–0.18 | 0.53–0.59 | - | 0.12–0.15 | 0.12–0.15 | 0.33–0.41 | [65] |
Rat lung * | 0.02–0.03 | 4.70–5.30 a | 0.16–0.18 | 0.06–0.13 | - | 0.03–0.04 | 0.05–0.07 | 0.27–0.38 | [65] |
Rat intestine * | 0.08–0.10 | 4.30–4.70 a | 0.08–0.10 | 0.03–0.05 | - | 0.07–0.09 | 0.04–0.05 | 0.70–0.92 | [65] |
Rat spleen * | 0.04–0.05 | 3.00–3.20 a | 0.12–0.14 | 0.21–0.26 | - | 0.12–0.14 | 0.07–0.09 | 0.35–0.55 | [65] |
Rat muscle * | ~0.01 | 5.90–6.70 a | 0.18–0.21 | 0.05–0.06 | - | 0.14–0.17 | 0.16–0.19 | 0.07–0.15 | [65] |
Medium from human ovary SK-OV-3 cancer cells culture | - | 0.69–4.93 | - | - | - | - | - | - | [41] |
Medium from human brain LN-229 cells culture ** | n.d. | 31.90–32.50 | - | ~0.10 | 0.70–0.90 | - | - | - | [74] |
Human brain LN-229 cells ** | 12.00–16.80 | 308.50–380.50 | - | 1.40–1.80 | 1.20–1.40 | - | - | - | [74] |
Medium from human endometrial cancer cells culture | - | 1.22–12.26 | - | - | - | - | - | - | [75] |
Medium from human peripheral blood mononuclear cells culture | 91.10–101.50 | 0.24–0.32 | - | - | <0.01 | - | - | - | [76] |
Metabolite | Chemical Formula | Structure | Eox * [V] (pH = 7.7) | Isoelectric Point [37] |
---|---|---|---|---|
Kyn | C10H12N2O3 | | 0.86 | 6.11 |
Kyna | C10H7NO3 | | 1.06 | 2.31 |
3HKyn | C10H12N2O4 | | 0.42 | 6.11 |
3HAA | C7H7NO3 | | 0.36 | 3.03 |
AA | C7H7NO2 | | 0.76 | 3.34 |
XA | C10H7NO4 | | 0.65 | 3.25 |
QA | C7H5NO4 | | n.d. | 2.27 |
Feature | Analysis Using Electrochemical Sensors | HPLC-UV | LC-MS/MS |
---|---|---|---|
Setup | System consisting of potentiostat/galvanostat, stand, electrochemical cell, and a computer equipped with software for data acquisition and analysis. Additional modules can be supplied | LC system consisting of modules, such as autosampler, degasser, isocratic/binary quaternary pump, column thermostat, and a UV detector connected with a computer equipped with software for data acquisition and analysis | LC system consisting of modules, such as autosampler, degasser, isocratic/binary quaternary pump, and a column thermostat connected to tandem mass spectrometer with an ion source controlled with a computer equipped with software for data acquisition and analysis. Furthermore, a nitrogen gas generator and vacuum pump |
Cost of instrument, replacing parts, maintenance | low | high | very high |
Instrument maintenance | simple and fast | time-consuming but not advanced | time-consuming and advanced |
Amount of waste | small | large | medium |
Method development | intermediate | intermediate | advanced |
Instrument control | easy | easy | easy |
Data interpretation | easy | medium | advanced |
Cost of single analysis | low | medium | high |
Analysis time | short (even <1min) | long (~25–60 min) | short (~7–15 min) |
Sample preparation | can be omitted | multi-step | multi-step |
Consumption of organic solvents | low (standards’ preparation, electrode surface modification) | very high (preparation of standards, samples, mobile phase) | high (preparation of standards, samples and mobile phase, cleaning of MS source) |
Sensitivity | high | intermediate | high |
Selectivity | poor (can be improved by the proper modification of the electrode surface) | high (provided by separation of analytes on column, proper choice of analytical wavelength, gradient of the mobile phase, sample pretreatment) | high (provided by selection of the precursor and product ions characteristic for the analyte) |
Number of monitored analytes during a single analysis | ~1–3 | numerous | numerous |
Amount of sample injected for a single analysis | ≥100 µL | ≥10 µL | ≤10 µL |
Miniaturization | YES | NO | NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadok, I.; Staniszewska, M. Electrochemical Determination of Kynurenine Pathway Metabolites—Challenges and Perspectives. Sensors 2021, 21, 7152. https://doi.org/10.3390/s21217152
Sadok I, Staniszewska M. Electrochemical Determination of Kynurenine Pathway Metabolites—Challenges and Perspectives. Sensors. 2021; 21(21):7152. https://doi.org/10.3390/s21217152
Chicago/Turabian StyleSadok, Ilona, and Magdalena Staniszewska. 2021. "Electrochemical Determination of Kynurenine Pathway Metabolites—Challenges and Perspectives" Sensors 21, no. 21: 7152. https://doi.org/10.3390/s21217152
APA StyleSadok, I., & Staniszewska, M. (2021). Electrochemical Determination of Kynurenine Pathway Metabolites—Challenges and Perspectives. Sensors, 21(21), 7152. https://doi.org/10.3390/s21217152