Lead-Free AE Sensor Based on BZT–BCT Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The bulk density of the BZT–BCT ceramic was 5.59 g/cm3, and the relative density was 98.2%.
- The best values were obtained when the D/T ratio was 1, with Qm, k33, kp, keff, and volume values of 40.2, 0.51, 0.58, 0.47, and 785 mm3, respectively.
- The actually fabricated BZT–BCT ceramic tended to have a lower fr as the D/T ratio decreased.
- In ATILA simulation, the fr of the BZT–BCT ceramic tended to decrease as the D/T ratio decreased.
- In ATILA simulation, when a force of 1 N was applied, as the D/T ratio decreased, the output voltage increased. The highest output voltage value was 152.97 V at the D/T ratio of 0.5.
- The BZT–BCT ceramic with the D/T ratio of 1.5 attained the highest d33 of 377 pC/N.
- The BZT–BCT ceramic with the D/T ratio of 1 attained the highest g33 of 11.38 × 10−3 Vm/N.
- The BZT–BCT ceramic with the D/T ratio of 1.5 attained the highest FOM33 value of 4.21 pm2/N.
- An AE sensor was fabricated by the BZT–BCT ceramic with the D/T ratio of 1 showing the best characteristics, and the AE sensor characteristics were evaluated by the PLB method.
- The peak output voltage of the AE sensor was 0.6 V.
- The maximum sensitivity and frequency of the AE sensor were 65 dB and 30 kHz, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiwa, M.; Kishi, T. NDT-based Assessment of Damage: An Overview. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–8. [Google Scholar]
- Jayakumar, T. NDT Techniques: Acoustic Emission. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 6001–6003. [Google Scholar]
- Huang, J. Non-destructive evaluation (NDE) of composites: Acoustic emission (AE). In Non-Destructive Valuation (NDE) of Polymer Matrix Composites; Kharbari, V.M., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2013; pp. 12–32. [Google Scholar]
- Al–Obaidi, S.M.A.; Leong, M.S.; Hamzah, R.I.R.; Abdelrhman, A.M. A Review of Acoustic Emission Technique for Machinery Condition Monitoring: Defects Detection & Diagnostic. Appl. Mech. Mater. 2012, 229, 1476–1480. [Google Scholar]
- Świt, G. Acoustic Emission Method for Locating and Identifying Active Destructive Processes in Operating Facilities. Appl. Sci. 2018, 8, 1295. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.; Lin, D.; Chan, H. Lead-free acoustic emission sensors. Rev. Sci. Instrum. 2007, 78, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.; Byeon, S.; Park, M.; Yoo, J. Sensitivity Properties of Acoustic Emission Sensor Using Lead-free (Na,K,Li)(Nb,Ta,Zn)O3 System Ceramics. Integr. Ferroelectr. 2012, 140, 123–131. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602–257604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossetti, G.; Khachaturyan, A.; Akcay, G.; Ni, Y. Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys. 2008, 103, 114113–114115. [Google Scholar] [CrossRef]
- Fu, H.; Cohen, R. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000, 403, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Ahart, M.; Somayazulu, M.; Cohen, R.; Ganesh, P.; Dera, P.; Mao, H. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008, 451, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kim, J.; Koh, J. Piezoelectric properties of (1–x)BZT–xBCT system for energy harvesting applications. J. Eur. Ceram. Soc. 2018, 38, 4395–4403. [Google Scholar] [CrossRef]
- APC International Ltd. Piezoelectric Ceramics: Principles and Applications; APC International Ltd.: Mackeyville, PA, USA, 2011; Volume 2, pp. 1–114. [Google Scholar]
- Li, J. Lead-Free Piezoelectric Materials; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 11, pp. 1–240. [Google Scholar]
- Yuan, R.; Xue, D.; Zhou, Y.; Ding, X.; Sun, J.; Xue, D. Ferroelectric, elastic, piezoelectric, and dielectric properties of Ba(Ti0.7Zr0.3)O3–x(Ba0.82Ca0.18)TiO3 Pb-free ceramics. J. Appl. Phys. 2017, 122, 044105. [Google Scholar] [CrossRef]
- Arnau Vives, A. Piezoelectric transducers and Applications; Springer: Berlin/Heidelberg, Germany, 2004; pp. 39–62. [Google Scholar]
- Islam, R.; Priya, S. Realization of high energy density polycrystalline piezoelectric ceramics. Appl. Phys. Lett. 2006, 88, 032903. [Google Scholar] [CrossRef]
- Chung, H.; Kim, H. Permittivity in Tetragonal and Rhombohedral Phase PZT Ceramics after Poling. J. Korean Ceram. Soc. 1992, 29, 572–576. [Google Scholar]
- Boczar, T.; Lorenc, M. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response; ASTM Standard E976–10; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Viera, M.A.A.; Götz, R.; Aguiar, P.R.; Alexandre, F.A.; Fernandez, B.O.; Junior, P.A.O. Low-Cost Acoustic Emission Sensor Based on Piezoelectric Diaphragm. IEEE Sensors J. 2020, 20, 9377–9384. [Google Scholar] [CrossRef]
- Hong, J.; Yoo, J.; Lee, K.; Lee, S.; Song, H. Characteristics of AE sensor using lead free (LiNaK)(NaTaSb)O3 ceramics for fluid leak detection at the power plant valve. Jpn. J. Appl. Phys. 2008, 47, 2192–2194. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, K.; Hong, J. Sensitivity Characteristics of Acoustic Emission (AE) Sensor using the Lead-free (Na,K)NbO3 Ceramics. J. KIEEME 2007, 20, 218–222. [Google Scholar]
- Hong, J.; Shin, S.; Yoo, J.; Jeong, Y.; Lee, S. Sensitivity Properties of Acoustic Emission Sensor using NKN System Ceramics. J. KIEEME 2014, 27, 696–701. [Google Scholar]
Diameter (D) | Thickness (T) | D/T | fr (kHz) | fa (kHz) | Qm | k33 | kp | keff | Volume (mm3) |
---|---|---|---|---|---|---|---|---|---|
10 | 20 | 0.5 | 95.033 | 100.811 | 87.66 | 0.36 | 0.39 | 0.33 | 1570 |
10 | 10 | 1 | 172.724 | 196.067 | 40.20 | 0.51 | 0.58 | 0.47 | 785 |
10 | 6.6 | 1.5 | 208.225 | 235.428 | 42.34 | 0.50 | 0.57 | 0.46 | 518 |
10 | 5 | 2 | 246.239 | 265.751 | 127.85 | 0.41 | 0.44 | 0.37 | 392 |
10 | 4 | 2.5 | 263.901 | 282.842 | 373.86 | 0.39 | 0.42 | 0.35 | 314 |
10 | 3.3 | 3 | 266.659 | 287.786 | 123.57 | 0.41 | 0.44 | 0.37 | 259 |
Density (kg/m3) | d33 (pC/N) | kp | g33 (10−3 Vm/N) | Qm | Sensitivity (dB) | |
---|---|---|---|---|---|---|
PZT 5H [6] | 7600 | 550 | 0.62 | 18.3 | 70 | 65 |
PZT 5A [22] | 7500 | 380 | 0.62 | 25.0 | 100 | 69 |
KNN–Cu [6] | 4500 | 75 | 0.42 | 33.9 | 800 | 57 |
KNN–LS [23] | 4530 | 261 | 0.44 | 40.1 | 104.9 | 55 |
KNN–LTS [22] | 4600 | 300 | 0.49 | 27.0 | 54.76 | 66 |
BZT–BCT [This work] | 5590 | 370 | 0.58 | 11.3 | 40.2 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.-J.; Kang, W.-S.; Lim, D.-H.; Koo, B.-K.; Kim, M.-S.; Jeong, S.-J.; Kim, I.-S. Lead-Free AE Sensor Based on BZT–BCT Ceramics. Sensors 2021, 21, 7100. https://doi.org/10.3390/s21217100
Shin D-J, Kang W-S, Lim D-H, Koo B-K, Kim M-S, Jeong S-J, Kim I-S. Lead-Free AE Sensor Based on BZT–BCT Ceramics. Sensors. 2021; 21(21):7100. https://doi.org/10.3390/s21217100
Chicago/Turabian StyleShin, Dong-Jin, Woo-Seok Kang, Dong-Hwan Lim, Bo-Kun Koo, Min-Soo Kim, Soon-Jong Jeong, and In-Sung Kim. 2021. "Lead-Free AE Sensor Based on BZT–BCT Ceramics" Sensors 21, no. 21: 7100. https://doi.org/10.3390/s21217100
APA StyleShin, D.-J., Kang, W.-S., Lim, D.-H., Koo, B.-K., Kim, M.-S., Jeong, S.-J., & Kim, I.-S. (2021). Lead-Free AE Sensor Based on BZT–BCT Ceramics. Sensors, 21(21), 7100. https://doi.org/10.3390/s21217100