Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. GNSs Synthesis
2.3. GNF Synthesis
2.4. Characterization of Gold Nanoparticles
2.5. Synthesis of Antibody Conjugates with GNSs and GNFs
2.6. Determination of the Number of Antibodies in Conjugates by ELISA
2.7. Evaluation of Binding of Nanoparticle–Antibody Conjugates with Antigens (Functional Activity) by ELISA
2.8. Fabrication of Tests Strips for LFIAs
2.9. LFIA and Data Processing
3. Results
3.1. GNS Synthesis and Development of LFIA Test Systems Using GNSs
3.2. Synthesis and Characterization of the GNFs’ Physical Parameters
3.3. Preparation of GNF Conjugates with Antibodies and Their Functional Characteristics
3.4. Kinetics of the Movement of Nanoparticle Conjugates in a Lateral Flow on the LFIA Working Membrane
3.5. Development and Characterization of GNF-Based LFIA Test Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vashist, S.K.; Luong, J.H. Immunoassays: An Overview. In Handbook of Immunoassay Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–18. [Google Scholar]
- Farka, Z.; Jurik, T.; Kovář, D.; Trnkova, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef]
- Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Cho, H.-Y.; Choi, H.K.; Lee, J.-Y.; Choi, J.-W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci. 2018, 19, 2021. [Google Scholar] [CrossRef] [Green Version]
- Borse, V.B.; Konwar, A.N.; Jayant, R.D.; Patil, P.O. Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv. Transl. Res. 2020, 10, 878–902. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Wuithschick, M.; Birnbaum, A.; Witte, S.; Sztucki, M.; Vainio, U.; Pinna, N.; Rademann, K.; Emmerling, F.; Kraehnert, R.; Polte, J.R. Turkevich in new robes: Key questions answered for the most common gold nanoparticle synthesis. ACS Nano 2015, 9, 7052–7071. [Google Scholar] [CrossRef] [PubMed]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhao, P.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 2014, 53, 1756–1789. [Google Scholar] [CrossRef]
- Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638–665. [Google Scholar] [CrossRef]
- Kharisov, B.I. A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2008, 2, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Kasture, P.; Gaud, R. Nanoflowers: The future trend of nanotechnology for multi-applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Khlebtsov, N.G.; Trachuk, L.A.; Mel’nikov, A.G. The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Opt. Spectrosc. 2005, 98, 77–83. [Google Scholar] [CrossRef]
- Zhang, W.; Duan, H.; Chen, R.; Ma, T.; Zeng, L.; Leng, Y.; Xiong, Y. Effect of different-sized gold nanoflowers on the detection performance of immunochromatographic assay for human chorionic gonadotropin detection. Talanta 2019, 194, 604–610. [Google Scholar] [CrossRef]
- Wong, R.C.; Tse, H.Y. Lateral Flow Immunoassay; Humana Press: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Lai, W.; Xiong, Z.; Huang, Y.; Su, F.; Zhang, G.; Huang, Z.; Peng, J.; Liu, D. Gold nanoflowers labelled lateral flow assay integrated with smartphone for highly sensitive detection of clenbuterol in swine urine. Food Agric. Immunol. 2019, 30, 1225–1238. [Google Scholar] [CrossRef] [Green Version]
- Serebrennikova, K.V.; Samsonova, J.V.; Osipov, A.P.; Senapati, D.; Kuznetsov, D.V. Gold nanoflowers and gold nanospheres as labels in lateral flow immunoassay of procalcitonin. In Nano Hybrids and Composites; Trans Tech Publications Ltd.: Zurich, Switzerland, 2017; pp. 47–53. [Google Scholar]
- Fadlalla, M.H.; Ling, S.; Wang, R.; Li, X.; Yuan, J.; Xiao, S.; Wang, K.; Tang, S.; Elsir, H.; Wang, S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front. Cell. Infect. Microbiol. 2020, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.; Zhao, Q.; Iqbal, M.N.; Dong, M.; Li, X.; Lin, M.; Wang, R.; Lei, F.; He, C.; Wang, S. Development of immunoassay methods based on monoclonal antibody and its application in the determination of cadmium ion. J. Hazard. Mater. 2021, 411, 124992. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Liu, H.; Gao, Y.; Zhao, Q.; Ling, S.; Wang, S. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chem. 2021, 338, 127820. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Li, J.; Huang, X.; Duan, H.; Ji, Y.; Xiong, Y. Effect of the tip length of multi-branched AuNFs on the detection performance of immunochromatographic assays. Anal. Methods 2016, 8, 3316–3324. [Google Scholar] [CrossRef]
- Zherdev, A.V.; Dzantiev, B.B. Ways to reach lower detection limits of lateral flow immunoassays. In Rapid Test—Advances in Design, Format and Diagnostic Applications; Anfossi, L., Ed.; IntechOpen: London, UK, 2018; pp. 9–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Pan, N.; An, Y.; Xu, M.; Tan, L.; Zhang, L. Diagnostic and Prognostic Biomarkers for Myocardial Infarction. Front. Cardiovasc. Med. 2020, 7, 617277. [Google Scholar] [CrossRef] [PubMed]
- Tilea, I.; Varga, A.; Serban, R.C. Past, Present, and Future of Blood Biomarkers for the Diagnosis of Acute Myocardial Infarction—Promises and Challenges. Diagnostics 2021, 11, 881. [Google Scholar] [CrossRef] [PubMed]
- Alquézar-Arbé, A.; Sionis, A.; Ordonez-Llanos, J. Cardiac troponins: 25 years on the stage and still improving their clinical value. Crit. Rev. Clin. Lab. Sci. 2017, 54, 551–571. [Google Scholar] [CrossRef]
- Twerenbold, R.; Boeddinghaus, J.; Nestelberger, T.; Wildi, K.; Gimenez, M.R.; Badertscher, P.; Mueller, C. How to best use high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Clin. Biochem. 2018, 53, 143–155. [Google Scholar] [CrossRef]
- Byzova, N.A.; Zherdev, A.V.; Vengerov, Y.Y.; Starovoitova, T.A.; Dzantiev, B.B. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim. Acta 2017, 184, 463–471. [Google Scholar] [CrossRef]
- Taranova, N.A.; Slobodenuyk, V.D.; Zherdev, A.V.; Dzantiev, B.B. Network of gold conjugates for enhanced sensitive immunochromatographic assays of troponins. RSC Adv. 2021, 11, 16445–16452. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Byzova, N.A.; Safenkova, I.V.; Slutskaya, E.S.; Zherdev, A.V.; Dzantiev, B.B. Less is more: A comparison of antibody–gold nanoparticle conjugates of different ratios. Bioconjug. Chem. 2017, 28, 2737–2746. [Google Scholar] [CrossRef]
- De Puig, H.; Tam, J.O.; Yen, C.-W.; Gehrke, L.; Hamad-Schifferli, K. Extinction coefficient of gold nanostars. J. Phys. Chem. C 2015, 119, 17408–17415. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhou, Y.; Huang, H.; Chen, X.; Leng, Y.; Lai, W.; Huang, X.; Xiong, Y. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sens. Actuators B Chem. 2020, 316, 128107. [Google Scholar] [CrossRef]
- Beyene, A.B.; Hwang, B.J.; Tegegne, W.A.; Wang, J.-S.; Tsai, H.-C.; Su, W.-N. Reliable and sensitive detection of pancreatic cancer marker by gold nanoflower-based SERS mapping immunoassay. Microchem. J. 2020, 158, 105099. [Google Scholar] [CrossRef]
- Ma, T.; Duan, H.; Zhang, W.; Shao, Y.; Hao, L.; Chen, X.; Leng, Y.; Huang, X.; Xiong, Y. An amphiphilic-ligand-modified gold nanoflower probe for enhancing the stability of lateral flow immunoassays in dried distillers grains. RSC Adv. 2019, 9, 36670–36679. [Google Scholar] [CrossRef] [Green Version]
Analyte | Cutoff, ng/mL | LOD, ng/mL |
---|---|---|
FABP | 11 | 1.4 ± 0.1 |
cTnT | 11 | 2.0 ± 0.1 |
cTnI | 33 | 3.5 ± 0.3 |
Preparation | Absorption Peak, nm |
---|---|
GNFs 20/0.04/0.5 | 648–656 |
GNFs 20/0.08/0.5 | 690–702 |
GNFs 20/0.12/0.5 | 702–708 |
GNFs 20/0.12/0.2 | 771–776 |
GNFs 20/0.12/1.0 | 652–656 |
GNFs | Immobilized Antibodies, % |
---|---|
10/0.1/1 | 89 ± 5 |
10/0.5/1 | 72 ± 7 |
10/0.5/0.2 | 90 ± 6 |
20/0.12/1 | 92 ± 4 |
20/0.04/0.5 | 78 ± 8 |
20/0.12/0.2 | 95 ± 6 |
10/0.12/0.5 | 99 ± 3 |
20/0.12/0.5 | 99 ± 4 |
5/0.12/0.5 | 50 ± 8 |
GNSs 30 nm | 65 ± 5 |
Analyte | GNSs | GNFs (20/0.12/0.2) | GNFs (10/0.12/0.5) | |||
---|---|---|---|---|---|---|
Cutoff, ng/mL | LOD, ng/mL | Cutoff, ng/mL | LOD, ng/mL | Cutoff, ng/mL | LOD, ng/mL | |
FABP | 11 | 1.4 ± 0.1 | 1.1 | 0.03 ± 0.008 | ||
cTnT | 11 | 2 ± 0.1 | 3.7 | 0.06 ± 0.01 | 1.2 | 0.01 ± 0.002 |
cTnI | 33 | 3.5 ± 0.3 | 11 | 1.2 ± 0.1 |
Particles | Size, nm | Assay Format | Analyte | GNFs vs. GNSs | Ref. |
---|---|---|---|---|---|
GNFs 20/0.3/1.2 | 80 | Competitive LFIA | Clenbuterol | 5 times > | [19] |
GNFs 5/0.2/0.4 | 37.7 | Competitive LFIA | Four mycotoxins | - | [35] |
GNFs 20/0.18/0.5 | 100 | Sandwich LFIA | Procalitonion | 5 times > | [20] |
GNFs 20/0.18/2.1 | 55 | Sandwich LFIA | Cancer marker | - | [36] |
GNFs 18/0.3/1.78 | 80 | Competitive LFIA | Zearalenone | - | [37] |
GNFs 40/0.25/2 | 80 | Competitive LFIA | Ochratoxins A and B | 5 times > | [21] |
GNFs 20/0.18/0.75 | 80 | Competitive LFIA | Cd2+ | 12 times > | [22] |
GNFs 40/0.25/2 | 79 | Competitive LFIA | Lactoferrin | 4 times > | [23] |
GNFs 20/0.09/2.5 | 35 | Competitive LFIA | Ochratoxin A | 4 times > | [24] |
GNFs 3.5/0.2/0.4 | 33 | Sandwich LFIA | Chorionic gonadotropin | - | [16] |
20/0.3/4 | 47 | ||||
66/0.3/2.5 | 194 | ||||
GNFs 20/0.12/0.5 | 65 | Sandwich LFIA | Cardio markers | 3–10 times > | This work |
10/0.12/0.5 | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taranova, N.A.; Byzova, N.A.; Pridvorova, S.M.; Zherdev, A.V.; Dzantiev, B.B. Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors. Sensors 2021, 21, 7098. https://doi.org/10.3390/s21217098
Taranova NA, Byzova NA, Pridvorova SM, Zherdev AV, Dzantiev BB. Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors. Sensors. 2021; 21(21):7098. https://doi.org/10.3390/s21217098
Chicago/Turabian StyleTaranova, Nadezhda A., Nadezhda A. Byzova, Svetlana M. Pridvorova, Anatoly V. Zherdev, and Boris B. Dzantiev. 2021. "Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors" Sensors 21, no. 21: 7098. https://doi.org/10.3390/s21217098
APA StyleTaranova, N. A., Byzova, N. A., Pridvorova, S. M., Zherdev, A. V., & Dzantiev, B. B. (2021). Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors. Sensors, 21(21), 7098. https://doi.org/10.3390/s21217098