Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
Abstract
:1. Introduction
- Impurity with the same material as the tire material (CH01);
- Impurity with a different material from the tire material (CH02);
- Material damaged by temperature and pressure (CH03);
- Crack (CH04);
- Mechanical damage to integrity (CH05); and
- Etched material (CH06).
2. Materials and Methods
2.1. Camera Vision
2.2. Point Cloud from the Laser Sensor
- Coordinates of the snipped pattern;
- Pattern from the grayscale image generated from the point cloud;
- Point cloud of the pattern;
- Positions in string chain;
- Pattern from a color image converted from grayscale to color.
2.3. Fusion Geometric Data and Pictures from the Camera
2.4. Defect Detection by RCNN with VGG-16 Network
2.5. Classification of Detected Abnormalities
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuric, I.; Císar, M.; Tlach, V.; Zajačko, I.; Gál, T.; Więcek, D. Technical Diagnostics at the Department of Automation and Production Systems. In Advances in Ergonomics in Design; Springer: Berlin/Heidelberg, Germany, 2019; Volume 835, pp. 474–484. [Google Scholar] [CrossRef]
- Klarak, J.; Kuric, I.; Cisar, M.; Stancek, J.; Hajducik, A.; Tucki, K. Processing 3D Data from Laser Sensor into Visual Content Using Pattern Recognition. In Proceedings of the 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA), Kyoto, Japan, 23–29 April 2021; pp. 543–549. [Google Scholar] [CrossRef]
- Klarák, J.; Hajdučík, A.; Bohušík, M.; Kuric, I. Methods of Processing Point Cloud to Achieve Improvement Data Possibilities. In Projektowanie, Badania i Eksploatacja’ 2020; p. 419. Available online: http://www.engineerxxi.ath.eu/book/projektowanie-badania-i-eksploatacja2020/ (accessed on 19 February 2021).
- Kandera, M. Design of Methodology for Testing and Defect Detection Using Artificial Intelligence Methods. 2020. Available online: http://opac.crzp.sk/?fn=detailBiblioForm&sid=D51B1947951498618DF67753D437&seo=CRZP-detail-kniha (accessed on 24 October 2019).
- Transfer Learning Using AlexNet—MATLAB & Simulink—MathWorks United Kingdom. Available online: https://uk.mathworks.com/help/deeplearning/examples/transfer-learning-using-alexnet.html (accessed on 14 October 2019).
- Massaro, A.; Dipierro, G.; Cannella, E.; Galiano, A.M. Comparative Analysis among Discrete Fourier Transform, K-Means and Artificial Neural Networks Image Processing Techniques Oriented on Quality Control of Assembled Tires. Information 2020, 11, 257. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Borish, M.; Post, B.K.; Roschli, A.; Chesser, P.C.; Love, L.J. Real-Time Defect Correction in Large-Scale Polymer Additive Manufacturing via Thermal Imaging and Laser Profilometer. Procedia Manuf. 2020, 48, 625–633. [Google Scholar] [CrossRef]
- Borish, M.; Post, B.K.; Roschli, A.; Chesser, P.C.; Love, L.J.; Gaul, K.T. Defect Identification and Mitigation Via Visual Inspection in Large-Scale Additive Manufacturing. JOM 2019, 71, 893–899. [Google Scholar] [CrossRef]
- Mullan, F.; Mylonas, P.; Parkinson, C.; Bartlett, D.; Austin, R. Precision of 655 nm Confocal Laser Profilometry for 3D surface texture characterisation of natural human enamel undergoing dietary acid mediated erosive wear. Dent. Mater. 2018, 34, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Lung, C.W.; Chiu, Y.C.; Hsieh, C.W. A laser-based vision system for tire tread depth inspection. In Proceedings of the 2016 IEEE International Symposium on Computer, Consumer and Control, IS3C 2016, Xi’an, China, 4–6 July 2016; pp. 850–853. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y. Automatic inspection of tire geometry with machine vision. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, Beijing, China, 2–5 August 2015; pp. 1950–1954. [Google Scholar] [CrossRef]
- Mitaľ, G.; Dobránsky, J.; Ružbarský, J.; Olejárová, Š. Application of Laser Profilometry to Evaluation of the Surface of the Workpiece Machined by Abrasive Waterjet Technology. Appl. Sci. 2019, 9, 2134. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zheng, B.; Li, X.; Houkes, Z.; Regtien, P. Modelling and calibration of the laser beam-scanning triangulation measurement system. Robot. Auton. Syst. 2002, 40, 267–277. [Google Scholar] [CrossRef]
- Guberman, N. On Complex Valued Convolutional Neural Networks. February 2016. Available online: https://arxiv.org/abs/1602.09046v1 (accessed on 20 October 2021).
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef] [Green Version]
- Chien, J.-C.; Wu, M.-T.; Lee, J.-D. Inspection and Classification of Semiconductor Wafer Surface Defects Using CNN Deep Learning Networks. Appl. Sci. 2020, 10, 5340. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Han, X.; Zhao, C.; Zhang, D.; Zhu, K.; Su, Y. A Light-Weighted CNN Model for Wafer Structural Defect Detection. IEEE Access 2020, 8, 24006–24018. [Google Scholar] [CrossRef]
- Doğru, A.; Bouarfa, S.; Arizar, R.; Aydoğan, R. Using Convolutional Neural Networks to Automate Aircraft Maintenance Visual Inspection. Aerospace 2020, 7, 171. [Google Scholar] [CrossRef]
- Shi, J.; Li, Z.; Zhu, T.; Wang, D.; Ni, C. Defect Detection of Industry Wood Veneer Based on NAS and Multi-Channel Mask R-CNN. Sensors 2020, 20, 4398. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [Google Scholar] [CrossRef]
- Su, B.; Chen, H.; Zhou, Z. BAF-Detector: An Efficient CNN-Based Detector for Photovoltaic Cell Defect Detection. IEEE Trans. Ind. Electron. 2021. [Google Scholar] [CrossRef]
- Jing, J.; Ma, H.; Zhang, H. Automatic fabric defect detection using a deep convolutional neural network. Color. Technol. 2019, 135, 213–223. [Google Scholar] [CrossRef]
- Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated defect inspection system for metal surfaces based on deep learning and data augmentation. J. Manuf. Syst. 2020, 55, 317–324. [Google Scholar] [CrossRef]
- Sun, X.; Gu, J.; Tang, S.; Li, J. Research Progress of Visual Inspection Technology of Steel Products—A Review. Appl. Sci. 2018, 8, 2195. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-Y.; Li, C.; Chang, J.-W.; Jeng, M. An unsupervised neural network approach for automatic semiconductor wafer defect inspection. Expert Syst. Appl. 2009, 36, 950–958. [Google Scholar] [CrossRef]
- Le, D.C.; Zincir-Heywood, A.N. Evaluating Insider Threat Detection Workflow Using Supervised and Unsupervised Learning. In Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 270–275. [Google Scholar] [CrossRef]
- Chen, C.-C.; Juan, H.-H.; Tsai, M.-Y.; Lu, H.H.-S. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, Z.; Van Der Heijden, F. Recursive unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 651–656. [Google Scholar] [CrossRef]
- Kuric, I.; Kandera, M.; Klarák, J.; Ivanov, V.; Więcek, D. Visual Product Inspection Based on Deep Learning Methods. In Advances in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 148–156. [Google Scholar] [CrossRef]
- Klarák, J.; Kandera, M.; Kuric, I. Transformation of Point Cloud into the Two-Dimensional Space Based on Fuzzy Logic Principles. 2019. Available online: http://www.engineerxxi.ath.eu/book/designing-researches-and-exploitation-2019-vol-1/ (accessed on 26 October 2020).
- Davies, E. A modified Hough scheme for general circle location. Pattern Recognit. Lett. 1988, 7, 37–43. [Google Scholar] [CrossRef]
- Seo, S.-W.; Kim, M. Efficient architecture for circle detection using Hough transform. In Proceedings of the International Conference on ICT Convergence 2015: Innovations Toward the IoT, 5G and Smart Media Era, ICTC 2015, Jeju Island, Korea, 28–30 October 2015; pp. 570–572. [Google Scholar] [CrossRef]
- Che, E.; Jung, J.; Olsen, M.J. Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review. Sensors 2019, 19, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OpenCV: Template Matching. Available online: https://docs.opencv.org/master/d4/dc6/tutorial_py_template_matching.html (accessed on 1 June 2021).
- Briechle, K.; Hanebeck, U.D. Template Matching using Fast Normalized Cross Correlation. Opt. Pattern Recognit. XII 2001, 4387, 95–103. [Google Scholar]
- Tsai, D.-M.; Lin, C.-T. Fast normalized cross correlation for defect detection. Pattern Recognit. Lett. 2003, 24, 2625–2631. [Google Scholar] [CrossRef]
- Friemel, B.H.; Bohs, L.N.; Trahey, G.E. Relative performance of two-dimensional speckle-tracking techniques: Normalized correlation, non-normalized correlation and sum-absolute-difference. In Proceedings of the IEEE Ultrasonics Symposium, Seattle, WA, USA, 7–10 November 1995; Volume 2, pp. 1481–1484. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-Means: A Clustering Technique Based on Elbow Method and K-Means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Visualizing K-Means Clustering. Available online: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/ (accessed on 14 October 2019).
- Arlia, D.; Coppola, M. Experiments in Parallel Clustering with DBSCAN. Lect. Notes Comput. Sci. 2001, 2150, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. 1996. Available online: www.aaai.org (accessed on 10 October 2019).
- Zhou, Q.-Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. Available online: http://www.open3d (accessed on 26 October 2020).
- Wang, J.; Xu, C.; Yang, Z.; Zhang, J.; Li, X. Deformable Convolutional Networks for Efficient Mixed-Type Wafer Defect Pattern Recognition. IEEE Trans. Semicond. Manuf. 2020, 33, 587–596. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, X.; Liu, Y.; Yu, B. Tire Defects Classification Using Convolution Architecture for Fast Feature Embedding. Int. J. Comput. Intell. Syst. 2018, 11, 1056–1066. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Li, X.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl. 2020, 32, 6111–6124. [Google Scholar] [CrossRef]
- Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors 2019, 19, 3556. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zheng, H.; Guo, Z.; Wu, X.; Zheng, Z. SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection. Appl. Sci. 2019, 9, 1364. [Google Scholar] [CrossRef] [Green Version]
Number of Scans | Number of Samples |
---|---|
Scan 1 | 107 |
Scan 2 | 126 |
Scan 4 | 91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuric, I.; Klarák, J.; Sága, M.; Císar, M.; Hajdučík, A.; Wiecek, D. Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning. Sensors 2021, 21, 7073. https://doi.org/10.3390/s21217073
Kuric I, Klarák J, Sága M, Císar M, Hajdučík A, Wiecek D. Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning. Sensors. 2021; 21(21):7073. https://doi.org/10.3390/s21217073
Chicago/Turabian StyleKuric, Ivan, Jaromír Klarák, Milan Sága, Miroslav Císar, Adrián Hajdučík, and Dariusz Wiecek. 2021. "Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning" Sensors 21, no. 21: 7073. https://doi.org/10.3390/s21217073
APA StyleKuric, I., Klarák, J., Sága, M., Císar, M., Hajdučík, A., & Wiecek, D. (2021). Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning. Sensors, 21(21), 7073. https://doi.org/10.3390/s21217073