
applied
sciences

Article

SDD-CNN: Small Data-Driven Convolution Neural
Networks for Subtle Roller Defect Inspection

Xiaohang Xu 1 , Hong Zheng 1,*, Zhongyuan Guo 1, Xiongbin Wu 1 and Zhaohui Zheng 2

1 School of Electronic Information, Wuhan University, Wuhan 430072, China; xuxiaohang@whu.edu.cn (X.X.);
guozhongyuan1993@outlook.com (Z.G.); xbwu@whu.edu.cn (X.W.)

2 Department of Public Courses, Wuhan Railway Vocational College of Technology, Wuhan 430205, China;
zhengzhaohui@sina.cn

* Correspondence: zh@whu.edu.cn

Received: 13 January 2019; Accepted: 27 March 2019; Published: 31 March 2019
����������
�������

Abstract: Roller bearings are some of the most critical and widely used components in rotating
machinery. Appearance defect inspection plays a key role in bearing quality control. However, in real
industries, bearing defects are usually extremely subtle and have a low probability of occurrence.
This leads to distribution discrepancies between the number of positive and negative samples, which
makes intelligent data-driven inspection methods difficult to develop and deploy. This paper presents
a small data-driven convolution neural network (SDD-CNN) for roller subtle defect inspection via
an ensemble method for small data preprocessing. First, label dilation (LD) is applied to solve the
problem of an imbalance in class distribution. Second, a semi-supervised data augmentation (SSDA)
method is proposed to extend the dataset in a more efficient and controlled way. In this method,
a coarse CNN model is trained to generate ground truth class activation and guide the random
cropping of images. Third, four variants of the CNN model, namely, SqueezeNet v1.1, Inception v3,
VGG-16, and ResNet-18, are introduced and employed to inspect and classify the surface defects
of rollers. Finally, a rich set of experiments and assessments is conducted, indicating that these
SDD-CNN models, particularly the SDD-Inception v3 model, perform exceedingly well in the roller
defect classification task with a top-1 accuracy reaching 99.56%. In addition, the convergence time
and classification accuracy for an SDD-CNN model achieve significant improvement compared to
that for the original CNN. Overall, using an SDD-CNN architecture, this paper provides a clear path
toward a higher precision and efficiency for roller defect inspection in smart manufacturing.

Keywords: subtle defect inspection; small data driven; convolution neural network; semi-supervised
data augmentation; roller bearings

1. Introduction

As an important basic part of the machinery industry, the roller bearing has been widely used in
many fields of national industries, such as aerospace, transportation, and machinery manufacturing.
The roller bearing has the function of supporting and reducing friction and is one of the most
indispensable and vulnerable parts in rotating machinery [1]. The quality of the roller surface directly
affects the performance and service life of mechanical equipment. Therefore, accurately and efficiently
inspecting the surface defects of rollers is of great significance in improving the yield of rollers,
the stable operation of machinery, and the production of enterprises.

At this stage, there are several ways to inspect the surface defects of rollers: (1) Manual detection.
As a traditional detection method, it has a low efficiency and is easily affected by subjective judgment,
resulting in an unstable detection accuracy. With the development of industrial automation, manual
testing has been gradually eliminated in modern production; (2) nondestructive testing schemes based

Appl. Sci. 2019, 9, 1364; doi:10.3390/app9071364 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0231-3102
https://orcid.org/0000-0002-7303-4856
http://www.mdpi.com/2076-3417/9/7/1364?type=check_update&version=1
http://dx.doi.org/10.3390/app9071364
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1364 2 of 16

on ultrasound, eddy current, etc. Such methods have the disadvantages of a complicated operation
and slow detection speed and are difficult to promote; (3) detection methods based on traditional
machine vision (MV). Such methods have made significant progress and yield reliable results in many
cases [2], but specific preprocessing approaches are required to extract representative features with
expert knowledge [3]. However, the wide variety of rollers and the short cycle of product upgrades
all require the feature representation to be redesigned from scratch; (4) the deep-learning-based fault
diagnosis method for spectrum signals. As a fast and effective data analysis method, deep learning has
been widely used by researchers and has caused breakthroughs in image recognition, computer vision,
and other fields [4]. Compared with the traditional MV method, the deep-learning-based method can
dig out the deep structure of data and automatically learn the representative features. Z. Chen et al. [5]
adopted a method based on deep neural networks (DNN), including the deep Boltzmann machine
(DBM), deep belief network (DBN), and stacked autoencoder (SAE), to diagnose and classify the
frequency spectrum signals of rollers. W. Zhang et al. [6] constructed their own convolutional neural
network (CNN) architecture for spectral signal detection. Similar work also includes models deployed
by researchers such as H. Shao et al. [7], X. Li et al. [8], and M. Gan et al. [9]. Such advanced methods
have achieved a high detection accuracy, but they still cannot meet the requirements of some enterprises
for visual detection.

Therefore, using the deep-learning-based method to visually detect the surface defects of rollers is
a problem that is unavoidable and worth studying. At present, this method still has many difficulties
and challenges. As a data-driven method, the deep learning model often requires massive amounts
of data for training to achieve a stable and accurate classification performance. However, in actual
production, the appearance of roller defects is very subtle and the probability of occurrence is low,
making the number of positive and negative samples extremely unbalanced. Therefore, obtaining a
high-performance classifier by training a small amount of data is critical.

This paper proposes a small data-driven convolutional neural network (SDD-CNN) for roller
surface defect inspection and classification. First, a label dilation (LD) method is adopted to solve the
problem of imbalance in the number of samples between categories. Second, a semi-supervised data
augmentation (SSDA) method is proposed for the problem of insufficient defect samples. This method
first trains a coarse network to generate a characteristic response intensity map for each sample.
Then, pseudorandom cropping is performed on each sample according to the probability value of the
intensity map to achieve more accurate data expansion. Third, four state-of-the-art CNN architectures
are used to train the sample images of the roller surface, obtain a high-performance classifier, and finally
achieve the visual detection of roller surface defects based on deep learning.

2. Related Works

The next generation of industry, namely Industry 4.0, holds the promise of increased flexibility
in manufacturing along with higher customization, better quality, and improved productivity [10].
With the widespread deployment of sensors and the Internet of Things, the need to handle big
manufacturing data has become highly desirable. In this sense, deep learning plays a critical role in
processing and analyzing these big data [11]. In recent years, deep-learning-based algorithms and
applications have made remarkable progress in the industrial field. This has effectively promoted the
development of intelligent manufacturing and accelerated the arrival of Industry 4.0.

There are three main types of deep-learning-based applications in intelligent manufacturing:
(1) For product quality inspection. CNNs, originally designed for image analysis, are a good fit for
automatic defect identification in surface integration detection. D. Weimer et al. [12] designed a deep
CNN architecture and realized the automatic extraction of features in industrial detection through the
optimization of hyperparameters. R. Ren et al. [13] proposed a general method based on deep learning
to realize automatic surface inspection. Similar applications include the work of Y.J. Cha et al. [14]
and J.K. Park et al. [15]; (2) for mechanical fault assessment. In this kind of application, a CNN
integrates feature learning and fault diagnosis into one model. This has been applied in many product

Appl. Sci. 2019, 9, 1364 3 of 16

types, including gearboxes [16,17], generators [18], and rotors [19]; (3) predictive prognosis for system
maintenance. In this kind of application, a deep recurrent neural network (RNN) is used to model
the historical data of the system state and predict the possible various states to guide the producer to
maintain the system and realize the strategy of intelligent maintenance. R. Zhao et al. [20] designed a
gated recurrent unit network based on local features to express local feature sequences, and realized
health monitoring on three machines. Y. Wu et al. [21] realized the estimation of the remaining service
life of aircraft turbofan engines by exploring a long short-term memory (LSTM) network. Similar
applications also include the work of R. Zhao et al. [22].

In the selection of a network architecture, many deep-learning-based models can be found in
the applications of intelligent industry. Specifically, these include: (1) CNN. This type of network is
deployed in the above work [12–19]; (2) the restricted Boltzmann machine (RBM) and its variants.
P. Wang et al. [23], J. Deutsch et al. [24], and W. Zhang et al. [25] used a DBN to monitor the operating
state of a system; (3) AE and its variants. W. Sun et al. [26], Z. Yang et al. [27], and L. Wang et al. [28]
explored unsupervised feature extraction by SAE; (4) RNN and its variants. This kind of network was
adopted in the above work [20–22].

3. Materials and Methods

3.1. Overview of Proposed Method

As shown in Figure 1, the SDD-CNN-based roller defect inspection approach proposed in
this paper includes raw image acquisition, roller ring region expansion, surface sample acquisition,
small dataset preprocessing, CNN model training, and classification. Details are as follows:

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 3 of 16

maintenance. In this kind of application, a deep recurrent neural network (RNN) is used to model
the historical data of the system state and predict the possible various states to guide the producer to
maintain the system and realize the strategy of intelligent maintenance. R. Zhao et al. [20] designed
a gated recurrent unit network based on local features to express local feature sequences, and realized
health monitoring on three machines. Y. Wu et al. [21] realized the estimation of the remaining service
life of aircraft turbofan engines by exploring a long short-term memory (LSTM) network. Similar
applications also include the work of R. Zhao et al. [22].

In the selection of a network architecture, many deep-learning-based models can be found in the
applications of intelligent industry. Specifically, these include: 1) CNN. This type of network is
deployed in the above work [12–19]; 2) the restricted Boltzmann machine (RBM) and its variants. P.
Wang et al. [23], J. Deutsch et al. [24], and W. Zhang et al. [25] used a DBN to monitor the operating
state of a system; 3) AE and its variants. W. Sun et al. [26], Z. Yang et al. [27], and L. Wang et al. [28]
explored unsupervised feature extraction by SAE; 4) RNN and its variants. This kind of network was
adopted in the above work [20–22].

3. Materials and Methods

3.1. Overview of Proposed Method

As shown in Figure 1, the SDD-CNN-based roller defect inspection approach proposed in this
paper includes raw image acquisition, roller ring region expansion, surface sample acquisition, small
dataset preprocessing, CNN model training, and classification. Details are as follows:

Class 1 Class 2 ... Class N

2.
 Im

ag
e

cr
op

pi
ng

 v
ia

 a
 s

lid
in

g
w

in
do

w

to
 g

en
er

at
e

or
ig

in
al

 s
am

pl
es

1.
 P

ol
ar

 to
 C

ar
te

si
an

co

or
di

na
te

 tr
an

sf
or

m
at

io
n

3.
 D

at
a

re
pr

oc
es

si
ng

an
d

bu
ild

 th
e

da
ta

se
t

Semi-supervised
data augmentationLabel dilation Normalization

Train
set

Validation
set

Test
set Labels

4.
 T

ra
in

in
g

CN
N

cl
as

si
fie

rs

SqueezeNet
v1.1

Inception
v3 VGG-16 ResNet-18

Trained model5.
 C

la
ss

ifi
ca

tio
n

an
d

in
sp

ec
tio

n

Prediction in a sliding window

Defects identification

Roller bearing surface defect
inspection and report

Figure 1. Framework and flowchart of proposed small data-driven convolution neural network (SDD-
CNN) for roller defect inspection.

1) Capture raw roller images using a monocular camera and a customized light source system.
This paper obtains 194 raw images with 2592 × 1944 pixel resolutions. To improve the robustness of
the classifier, these images cover three different lighting conditions by adjusting the brightness of the
light source system: perfect brightness (PB), 1.2PB, and 0.8PB [4];

2) To facilitate the inspection algorithm, the ring-shape image of the roller is transformed into a
rectangle by using a Polar-to-Cartesian (P2C) coordinate transformation [2]. Let (Cx, Cy) denote the
center of the roller; R and R0 denote the outer radius and inner radius of the roller, respectively; and

Figure 1. Framework and flowchart of proposed small data-driven convolution neural network
(SDD-CNN) for roller defect inspection.

(1) Capture raw roller images using a monocular camera and a customized light source system.
This paper obtains 194 raw images with 2592 × 1944 pixel resolutions. To improve the robustness of
the classifier, these images cover three different lighting conditions by adjusting the brightness of the
light source system: perfect brightness (PB), 1.2PB, and 0.8PB [4];

Appl. Sci. 2019, 9, 1364 4 of 16

(2) To facilitate the inspection algorithm, the ring-shape image of the roller is transformed into
a rectangle by using a Polar-to-Cartesian (P2C) coordinate transformation [2]. Let (Cx, Cy) denote
the center of the roller; R and R0 denote the outer radius and inner radius of the roller, respectively;
and (Px, Py) and (Dw, Dr) represent the coordinates of the corresponding points before and after the
transformation, respectively. Then, the P2C transformation can be described as{

x = Cx + (r + R0) ∗ cos(θ)
y = Cy − (r + R0) ∗ sin(θ)

(1)

where θ = 2πw/W. To ensure the quality of the resulting image, the bilinear interpolation method is
adopted to obtain a proper pixel value;

(3) Use a sliding window to crop the rectangular roller image into a small image suitable for CNN
training and prediction (with a resolution of 256 × 256). Then, screen and label the cropped image [29].
Figure 2 displays examples of the 11 categories of roller surface samples. In this paper, 830 surface
samples were obtained, and the distribution of different categories is listed in Table 1;

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 4 of 16

(Px, Py) and (Dw, Dr) represent the coordinates of the corresponding points before and after the
transformation, respectively. Then, the P2C transformation can be described as

0

0

() * cos()

() * sin()
x

y

x C r R

y C r R

θ

θ

= + +

= − +

 (1)

where θ = 2πw/W. To ensure the quality of the resulting image, the bilinear interpolation method is
adopted to obtain a proper pixel value;

(3) Use a sliding window to crop the rectangular roller image into a small image suitable for
CNN training and prediction (with a resolution of 256 × 256). Then, screen and label the cropped
image [29]. Figure 2 displays examples of the 11 categories of roller surface samples. In this paper,
830 surface samples were obtained, and the distribution of different categories is listed in Table 1;

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 2. Examples of different roller samples: (a) CQ: chamfer qualified; (b) CC: chamfer cracks; (c)
CI: chamfer indentations; (d) CSc: chamfer scratches; (e) CSt: chamfer stains; (f) EFQ: end-face
qualified; (g) EFC: end-face cracks; (h) EFI: end-face indentations; (i) EFSc: end-face scratches; (j) EFSt:
end-face stains; (k) EFSF: end-face serious fracture.

Table 1. Distribution of different categories of initial roller dataset.

Surface Type EFQ EFC EFI EFSc EFSt EFSF
Number of samples 300 94 14 32 18 44

Surface type CQ CC CI CSc CSt
Number of samples 200 70 31 6 21

(4) Small data preprocessing. The initial roller dataset is expanded for the first time by the LD
method for the sample imbalance problem. Then, the SSAD method is adopted to expand the dataset
a second time. Finally, the dataset is divided into three parts: a training set, verification set, and test
set, at a ratio of 3:1:1 [30];

(5) Sample training is conducted using four state-of-the-art CNN architectures, namely,
SqueezeNet v1.1 [31], Inception v3 [32], VGG-16 [33], and ResNet-18 [34]. The trained model is then
used to classify the roller image through a sliding window to obtain the final inspection result.

3.2. Small Data Preprocessing

3.2.1. Label Dilation

Figure 2 shows that the appearance characteristics of roller defects are very subtle, and it is
difficult to catch defective rollers in actual production. This leads to an extreme imbalance in the

Figure 2. Examples of different roller samples: (a) CQ: chamfer qualified; (b) CC: chamfer cracks; (c) CI:
chamfer indentations; (d) CSc: chamfer scratches; (e) CSt: chamfer stains; (f) EFQ: end-face qualified;
(g) EFC: end-face cracks; (h) EFI: end-face indentations; (i) EFSc: end-face scratches; (j) EFSt: end-face
stains; (k) EFSF: end-face serious fracture.

Table 1. Distribution of different categories of initial roller dataset.

Surface Type EFQ EFC EFI EFSc EFSt EFSF

Number of samples 300 94 14 32 18 44
Surface type CQ CC CI CSc CSt

Number of samples 200 70 31 6 21

(4) Small data preprocessing. The initial roller dataset is expanded for the first time by the LD
method for the sample imbalance problem. Then, the SSAD method is adopted to expand the dataset a
second time. Finally, the dataset is divided into three parts: a training set, verification set, and test set,
at a ratio of 3:1:1 [30];

(5) Sample training is conducted using four state-of-the-art CNN architectures, namely,
SqueezeNet v1.1 [31], Inception v3 [32], VGG-16 [33], and ResNet-18 [34]. The trained model is
then used to classify the roller image through a sliding window to obtain the final inspection result.

Appl. Sci. 2019, 9, 1364 5 of 16

3.2. Small Data Preprocessing

3.2.1. Label Dilation

Figure 2 shows that the appearance characteristics of roller defects are very subtle, and it is
difficult to catch defective rollers in actual production. This leads to an extreme imbalance in the
number of positive and negative samples. Inspired by the work of L. Shen et al. [35], this paper adopts
the LD method to expand the number of defect samples. The algorithm is described in Table 2.

Table 2. Algorithm steps of label dilation.

Input:
k categories of target samples: {C1, C2, . . . , Ck},
each of which has a number of {N1, N2, . . . , Nk};
Process:
For the most numerous category Cm, the sample size is Nm, and
the sample order is Pm0 = {1, 2, . . . , Nm}.
Randomly scramble the sample order to Pm-rand = {p1, p2, . . . , pNm}.
Output:
For any other categories Ci (i = 1, 2, . . . , k, i 6= m),
the original sample order is Pi0 = {1, 2, . . . , Ni}, and
the expanded sample order is
Pi-LD = {p1 mod Ni, p2 mod Ni, . . . , pNm mod Ni}.

After the LD operation, the sample number of all categories is consistent with the sample number
of the largest category before expansion. In this paper, the method is combined with the distribution
of the initial roller dataset to expand the number of all end-face categories to 300 and the number of all
chamfer categories to 200. In this way, the sample imbalance problem is solved, and the randomness
of the dataset is maintained.

3.2.2. Semi-Supervised Data Augmentation

After the sample imbalance is resolved, the total sample size is still insufficient to support deep
network training. Therefore, further data enhancement is required. In general, data enhancement
methods include random cropping, scaling, rotation, flipping, and adding random noise. For the roller
sample, the defects may appear at the edge of the picture because they are subtle and the position is
not fixed. As a result, the range of random cropping is not likely to include the defect and its vicinity.
Thus, the cropped sample no longer belongs to the original label category. Obviously, this goes against
the label-preserving principle of data augmentation [4]. Inspired by the work of B. Zhou et al. [36],
this paper proposes an SSAD method. The algorithm is as follows:

(1) As shown in Figure 3, a coarse classifier is obtained by training the GoogLeNet network with
the label dilated dataset; (2) an occlusion experiment [37] is conducted to generate the characteristic
response intensity map of all samples at the uppermost convolutional layer of the network; (3) a
location is randomly selected around the region where the intensity I < 0.4. This location is mapped to
the original image and uses it as a crop center; (4) each sample is cropped three times, and the cropped
size is 244 × 244; (5) other steps are consistent with the method in GoogLeNet paper [38]. Using the
SSAD method, the original label information is preserved and the diversity of the data is enhanced.
This can effectively prevent overfitting and improve the inference ability of the model.

Appl. Sci. 2019, 9, 1364 6 of 16

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 5 of 16

number of the largest category before expansion. In this paper, the method is combined with the
distribution of the initial roller dataset to expand the number of all end-face categories to 300 and the
number of all chamfer categories to 200. In this way, the sample imbalance problem is solved, and
the randomness of the dataset is maintained.

Table 2. Algorithm steps of label dilation.

Input:
k categories of target samples: {C1, C2, …, Ck},
each of which has a number of {N1, N2, …, Nk};

Process:
For the most numerous category Cm, the sample size is Nm, and
the sample order is Pm0 = {1, 2, …, Nm}.
Randomly scramble the sample order to Pm-rand = {p1, p2, …, pNm}.

Output:
For any other categories Ci (i = 1, 2, …, k, i ≠ m),
the original sample order is Pi0 = {1, 2, …, Ni}, and
the expanded sample order is

Pi-LD = {p1 mod Ni, p2 mod Ni, …, pNm mod Ni}.

3.2.2. Semi-Supervised Data Augmentation

After the sample imbalance is resolved, the total sample size is still insufficient to support deep
network training. Therefore, further data enhancement is required. In general, data enhancement
methods include random cropping, scaling, rotation, flipping, and adding random noise. For the
roller sample, the defects may appear at the edge of the picture because they are subtle and the
position is not fixed. As a result, the range of random cropping is not likely to include the defect and
its vicinity. Thus, the cropped sample no longer belongs to the original label category. Obviously,
this goes against the label-preserving principle of data augmentation [4]. Inspired by the work of B.
Zhou et al. [36], this paper proposes an SSAD method. The algorithm is as follows:

1) As shown in Figure 3, a coarse classifier is obtained by training the GoogLeNet network with
the label dilated dataset; 2) an occlusion experiment [37] is conducted to generate the characteristic
response intensity map of all samples at the uppermost convolutional layer of the network; 3) a
location is randomly selected around the region where the intensity I < 0.4. This location is mapped
to the original image and uses it as a crop center; 4) each sample is cropped three times, and the
cropped size is 244 × 244; 5) other steps are consistent with the method in GoogLeNet paper [38].
Using the SSAD method, the original label information is preserved and the diversity of the data is
enhanced. This can effectively prevent overfitting and improve the inference ability of the model.

...

...

Image
(Ground truth: EFC) GoogLeNet Classifier

Characteristic
response intensity map

Randomly
selected crop

SSDA

Original

EFC

Figure 3. Flowchart of the proposed semi-supervised data augmentation (SSAD) method.

3.3. CNN Architectures

In this section, four state-of-the-art CNN architectures are briefly introduced: SqueezeNet v1.1,
Inception v3, VGG-16, and ResNet-18. Among them, the VGG and ResNet architectures have the
ability to extend to ultra-deep networks. However, considering the efficiency of actual deployment

Figure 3. Flowchart of the proposed semi-supervised data augmentation (SSAD) method.

3.3. CNN Architectures

In this section, four state-of-the-art CNN architectures are briefly introduced: SqueezeNet v1.1,
Inception v3, VGG-16, and ResNet-18. Among them, the VGG and ResNet architectures have the
ability to extend to ultra-deep networks. However, considering the efficiency of actual deployment and
the fairness of the comparison, this paper selects VGG-16 and ResNet-18 that have similar numbers of
layers as those of the former two networks.

3.3.1. SqueezeNet v1.1

In recent years, much of the research on deep convolution networks has focused on improving the
accuracy. At the same accuracy level, a smaller CNN architecture can provide more efficient distributed
training, a smaller parameter model, and more suitability for deployment on memory-constrained
devices such as FPGAs. SqueezeNet achieves the same accuracy as AlexNet [4] on ImageNet, but only
uses 1/50 of the parameters of AlexNet.

The Fire module is the key to implementing SqueezeNet, which is composed of a squeeze layer
and an expand layer. The squeeze layer only uses 1 × 1 convolution filters, which reduces the number
of parameters by nine times compared with a 3 × 3 convolution filter. The expand layer has a mix of
1 × 1 and 3 × 3 filters, as shown in Figure 4. When the number of convolution filters meets

s1x1 < e1x1 + e3x3 (2)

it is helpful to reduce the number of input channels of the 3 × 3 group. In addition, in SqueezeNet,
the pooling layer is placed late in the network, providing a larger activation map for the convolutional
layers. A larger activation map retains more information and provides a higher classification accuracy.
In summary, these strategies allow SqueezeNet to dramatically reduce the number of parameters while
maintaining the accuracy.

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 6 of 16

and the fairness of the comparison, this paper selects VGG-16 and ResNet-18 that have similar
numbers of layers as those of the former two networks.

3.3.1. SqueezeNet v1.1

In recent years, much of the research on deep convolution networks has focused on improving
the accuracy. At the same accuracy level, a smaller CNN architecture can provide more efficient
distributed training, a smaller parameter model, and more suitability for deployment on memory-
constrained devices such as FPGAs. SqueezeNet achieves the same accuracy as AlexNet [4] on
ImageNet, but only uses 1/50 of the parameters of AlexNet.

The Fire module is the key to implementing SqueezeNet, which is composed of a squeeze layer
and an expand layer. The squeeze layer only uses 1 × 1 convolution filters, which reduces the number
of parameters by nine times compared with a 3 × 3 convolution filter. The expand layer has a mix of
1 × 1 and 3 × 3 filters, as shown in Figure 4. When the number of convolution filters meets

 1 1 1 1 3 3x x xs e e< + (2)

it is helpful to reduce the number of input channels of the 3 × 3 group. In addition, in SqueezeNet,
the pooling layer is placed late in the network, providing a larger activation map for the convolutional
layers. A larger activation map retains more information and provides a higher classification
accuracy. In summary, these strategies allow SqueezeNet to dramatically reduce the number of
parameters while maintaining the accuracy.

...

Squeeze layer:

1×1 convolution filters

...

Expand layer:

1×1 convolution filters 3×3 convolution filters

...

ReLU

S1x1

e1x1

e3x3

Figure 4. Organization of convolution filters in Fire module.

3.3.2. Inception v3

C. Szegedy et al. introduced new design principles and optimization ideas based on GoogLeNet
and proposed Inception v3. The paper points out that the representational bottleneck caused by
severe compression should be avoided in the early stage of a network. In addition, higher
dimensional representations are more suitable for processing locally within a network. Accordingly,
Inception v3 optimizes and improves Inception v1 from the following three aspects: 1) factorize
convolutions with a large filter size, including the use of a multilayer perceptron to replace a 5 × 5
filter and the special factorization of a 3 × 3 filter into an asymmetric structure of 3 × 1 and 1 × 3; 2)
introduce auxiliary classifiers with a regularization effect to accelerate the convergence of the
network; 3) parallel a convolutional layer with stride = 2 and a pooling layer to achieve more efficient
grid size reduction.

Noteworthily, Inception v3 proposed a mechanism to regularize the classifier layer by
estimating the marginalized effect of label-dropout during training. For each training example x, the
model computes the probability of each label k∈{1…K}:

Figure 4. Organization of convolution filters in Fire module.

Appl. Sci. 2019, 9, 1364 7 of 16

3.3.2. Inception v3

C. Szegedy et al. introduced new design principles and optimization ideas based on GoogLeNet
and proposed Inception v3. The paper points out that the representational bottleneck caused by severe
compression should be avoided in the early stage of a network. In addition, higher dimensional
representations are more suitable for processing locally within a network. Accordingly, Inception v3
optimizes and improves Inception v1 from the following three aspects: (1) factorize convolutions with
a large filter size, including the use of a multilayer perceptron to replace a 5 × 5 filter and the special
factorization of a 3 × 3 filter into an asymmetric structure of 3 × 1 and 1 × 3; (2) introduce auxiliary
classifiers with a regularization effect to accelerate the convergence of the network; (3) parallel a
convolutional layer with stride = 2 and a pooling layer to achieve more efficient grid size reduction.

Noteworthily, Inception v3 proposed a mechanism to regularize the classifier layer by estimating
the marginalized effect of label-dropout during training. For each training example x, the model
computes the probability of each label k∈{1 . . . K}:

p(k|x) = exp(zk)

∑K
i=1 exp(zi)

(3)

where zi represents the logits or unnormalized log-probabilities. Considering the ground-truth
distribution over labels q(k|x) for this training example, the loss can be defined as the cross entropy:

l = −∑ K
k=1log(p(k))q(k) (4)

Minimizing this is equivalent to maximizing the expected log-likelihood of a label. Additionally,
the cross-entropy loss is differentiable with respect to zk and the gradient has a simple form:

∂l
∂zk

= p(k)− q(k) (5)

Consider the case of a single ground-truth label y, so that q(y) = 1 and q(k) = 0 for all k = y. For a
particular example x with label y, the log-likelihood is maximized for q(k) = δk,y, where δk,y is Dirac
delta, which equals 1 for k = y and 0 otherwise. This maximum is not achievable for finite zk, but is
approached if zy >> zk for all k 6= y. This, however, can cause over-fitting and encourage the differences
between the largest logit and all others to become large, which reduces the ability of the model to
adapt. In order to encourage the model to be less confident about its predictions, a distribution over
labels u(k), independent of the training example x, and a smoothing parameter ε are introduced to
replace the q(k|x) with

q′(k
∣∣∣x) = (1− ε)δk,y + εu(k) (6)

In this paper, considering that the labels of the roller dataset have been normalized by the LD
method, the uniform distribution u(k) = 1/K is used so that

q′(k) = (1− ε)δk,y +
ε

K
(7)

where K = 11 classes and ε = 0.1.

3.3.3. VGG-16

K. Simonyan et al. discussed the effect of network depth on image recognition accuracy based
on AlexNet, and achieved a better performance by reducing the size of the filters and increasing
the number of convolutional layers. For the first time, VGG pushed the CNN depth to 16–19 layers.
The VGG-16 used in this paper has the following characteristics in the network design: (1) all the
convolution layers use 3 × 3 or 1 × 1 filters to reduce the number of model parameters; (2) the pooling
layer adopts maximum pooling, and is only placed behind the 2nd, 4th, 7th, 10th, and 13th convolution

Appl. Sci. 2019, 9, 1364 8 of 16

layers to enhance the ability of feature expression. The configuration for the convolution layers is
shown in Figure 5.

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 7 of 16

1

exp()
(|)

exp()
k

K

ii

z
p k x

z
=

=

 (3)

where zi represents the logits or unnormalized log-probabilities. Considering the ground-truth
distribution over labels q(k | x) for this training example, the loss can be defined as the cross entropy:

1
log(()) ()

K

k
l p k q k

=
= − (4)

Minimizing this is equivalent to maximizing the expected log-likelihood of a label. Additionally,
the cross-entropy loss is differentiable with respect to zk and the gradient has a simple form:

 () ()
k

l
p k q k

z

∂
= −

∂
 (5)

Consider the case of a single ground-truth label y, so that q(y) = 1 and q(k) = 0 for all k = y. For a
particular example x with label y, the log-likelihood is maximized for q(k) = δk,y, where δk,y is Dirac
delta, which equals 1 for k = y and 0 otherwise. This maximum is not achievable for finite zk, but is
approached if zy >> zk for all k ≠ y. This, however, can cause over-fitting and encourage the differences
between the largest logit and all others to become large, which reduces the ability of the model to
adapt. In order to encourage the model to be less confident about its predictions, a distribution over
labels u(k), independent of the training example x, and a smoothing parameter ϵ are introduced to
replace the q(k | x) with

 ,'(|) (1) ()k y u kq k x δ= − + (6)

In this paper, considering that the labels of the roller dataset have been normalized by the LD
method, the uniform distribution u(k) = 1 / K is used so that

 ,'() (1) k yk
K

q δ= − +

 (7)

where K = 11 classes and ϵ = 0.1.

3.3.3. VGG-16

K. Simonyan et al. discussed the effect of network depth on image recognition accuracy based
on AlexNet, and achieved a better performance by reducing the size of the filters and increasing the
number of convolutional layers. For the first time, VGG pushed the CNN depth to 16–19 layers. The
VGG-16 used in this paper has the following characteristics in the network design: 1) all the
convolution layers use 3 × 3 or 1 × 1 filters to reduce the number of model parameters; 2) the pooling
layer adopts maximum pooling, and is only placed behind the 2nd, 4th, 7th, 10th, and 13th
convolution layers to enhance the ability of feature expression. The configuration for the convolution
layers is shown in Figure 5.

Figure 5. ConvNet configurations of VGG-16.

3.3.4. ResNet-18

After VGG was proposed, researchers found that with the gradual deepening of the network,
the phenomenon of a decreased accuracy appeared, for which K. M. He et al. proposed a new

Figure 5. ConvNet configurations of VGG-16.

3.3.4. ResNet-18

After VGG was proposed, researchers found that with the gradual deepening of the network,
the phenomenon of a decreased accuracy appeared, for which K.M. He et al. proposed a new network,
namely, the deep residual network. In a traditional convolutional network or fully connected network,
information loss occurs more or less in the process of information transmission. At the same time,
gradient disappearance or gradient explosion may be caused, which makes the deep network unable
to train.

As shown in Figure 6, ResNet solves this problem to some extent by directly detouring the input
information to the output and protecting the integrity of the information. Therefore, the next layer
only needs to learn the part of the difference between the input and output of the previous layer.
This simplifies the learning objective and the difficulty of convergence. In a specific implementation,
ResNet mainly has two kinds of residual modules: one connects two 3 × 3 filters in series, and the
other uses 1 × 1, 3 × 3, and 1 × 1 filters in series.

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 8 of 16

network, namely, the deep residual network. In a traditional convolutional network or fully
connected network, information loss occurs more or less in the process of information transmission.
At the same time, gradient disappearance or gradient explosion may be caused, which makes the
deep network unable to train.

As shown in Figure 6, ResNet solves this problem to some extent by directly detouring the input
information to the output and protecting the integrity of the information. Therefore, the next layer
only needs to learn the part of the difference between the input and output of the previous layer. This
simplifies the learning objective and the difficulty of convergence. In a specific implementation,
ResNet mainly has two kinds of residual modules: one connects two 3 × 3 filters in series, and the
other uses 1 × 1, 3 × 3, and 1 × 1 filters in series.

Conv layer

Conv layer

ReLU

+

ReLU

Conv layer

Conv layer

ReLU

ReLU

Figure 6. Comparison of a plain block and residual block.

4. Experiments and Results

4.1. Experimental Setup

A powerful machine is used for these experiments. Its specifications are as follows:
CPU: Intel E3-1230 V2*2 (3.30 GHz);
Memory: 16 GB DDR3;
GPU: NVIDIA GTX-1080Ti.
The software platform used is the following:
Ubuntu 16.04 LTS;
Visual Studio Code with Python 2.7.
All of the following experiments are conducted using our own fork of Caffe [39], which is a

rapid, open-source framework for deep learning.
The roller dataset used in the experiment is augmented, with the specific number of samples in

each category shown in Table 3. There are 13,440 samples in the four categories. Among these, 27,630
are used as a training set, 4,480 as a verification set, and the remaining 4,480 as a test set.

Table 3. Distribution of 11 categories of roller datasets.

Type
EFQ / EFC / EFI /

EFSc / EFSt / EFSF
CQ / CC / CI /

CSc / CSt
Training set 1440 960

Validation set 480 320
Test set 480 320

Total number 2400 1600

4.2. Network Training and Performance Metrics

The four CNN architectures mentioned in Sec. 3.3 are trained for the roller surface classification
task using three different strategies. Two of these strategies refer to training the CNN from scratch,
which means starting from a random configuration of weights. The first from-scratch strategy uses a

Figure 6. Comparison of a plain block and residual block.

4. Experiments and Results

4.1. Experimental Setup

A powerful machine is used for these experiments. Its specifications are as follows:

CPU: Intel E3-1230 V2*2 (3.30 GHz);
Memory: 16 GB DDR3;
GPU: NVIDIA GTX-1080Ti.
The software platform used is the following:
Ubuntu 16.04 LTS;
Visual Studio Code with Python 2.7.

All of the following experiments are conducted using our own fork of Caffe [39], which is a rapid,
open-source framework for deep learning.

Appl. Sci. 2019, 9, 1364 9 of 16

The roller dataset used in the experiment is augmented, with the specific number of samples in
each category shown in Table 3. There are 13,440 samples in the four categories. Among these, 27,630
are used as a training set, 4480 as a verification set, and the remaining 4,480 as a test set.

Table 3. Distribution of 11 categories of roller datasets.

Type EFQ/EFC/EFI/EFSc/EFSt/EFSF CQ/CC/CI/CSc/CSt

Training set 1440 960
Validation set 480 320

Test set 480 320
Total number 2400 1600

4.2. Network Training and Performance Metrics

The four CNN architectures mentioned in Section 3.3 are trained for the roller surface classification
task using three different strategies. Two of these strategies refer to training the CNN from scratch,
which means starting from a random configuration of weights. The first from-scratch strategy uses a
dataset augmented by a method similar to that in the GoogLeNet paper, while the second strategy
uses the dataset augmented successively by the LD and SSAD methods. The third strategy is based on
transfer learning from pretrained networks, which are respectively obtained from the corresponding
papers cited above. Here, all of the network layers are fine-tuned, including convolution layers and
fully connected layers. From this perspective, the approach is called a deep transfer strategy. The third
strategy uses a dataset identical to that of the second one. We call the second and third networks an
SDD-CNN because of the small data-driven augmentation method that they use. Note that these 12
training configurations (4 CNN architectures × 3 strategies) use the same hyperparameter values
(momentum 0.9, weight decay 0.0005, learning rate 0.005, and batch size 32).

The number of network layers and parameters for each CNN model is displayed in Table 4.
SqueezeNet benefits from its special Fire module, and the parameter size is the smallest of the four
models. Inception v3 and ResNet18 have a similar number of parameters, and VGG16 is more than
five times larger than Inception v3.

Table 4. Training strategies and basic scales for four CNN models.

Model Name. Training Type Number of Layers Number of Parameters

SqueezeNet v1.1 From scratch
18 728,139SDD-SqueezeNet v1.1 From scratch

SDD-SqueezeNet v1.1 Deep transfer

Inception v3 From scratch
18 24,734,048SDD-Inception v3 From scratch

SDD-Inception v3 Deep transfer

VGG16 From scratch
16 134,305,611SDD-VGG16 From scratch

SDD-VGG16 Deep transfer

ResNet18 From scratch
18 11,196,107SDD-ResNet18 From scratch

SDD-ResNet18 Deep transfer

Figure 7 shows a comparison of the time and number of iterations required to achieve convergence
in the training of different network models. Obviously, in both strategies that train from scratch,
SDD-CNN requires less training time and iteration times than the original CNN. This is because,
for the roller defect image, the dataset of SDD-CNN preserves the defect features more completely,
which enables the model to extract the target features more precisely and to reach the convergence
more quickly. Specifically, the convergence time of the SDD-CNN can be reduced by at least 20% over

Appl. Sci. 2019, 9, 1364 10 of 16

the original CNN, and in the case of ResNet18, this number is up to 42%. With regard to the number
of iterations, the SDD-CNN can also be reduced by at least 20%; for ResNet18, the figure is 36%.
The SDD-CNN from deep transfer learning benefits from its pretraining model, and the convergence
time and iteration times are less than those of the general SDD-CNN. Conversely, from the perspective
of architecture, Inception v3 has the shortest convergence time no matter which training strategy is
adopted. Considering that this is not a small number of parameters, this convergence rate is quite
good and should be attributed to its efficient architecture design. VGG16 is the slowest of the four
architectures in terms of convergence speed because it has a huge weight to optimize.Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 10 of 16

Figure 7. Comparison of elapse and epoch for convergence for different models.

In addition to surveying the convergence speed of the model, the accuracy of the verification set
is an important indicator when considering the training performance. Figure 8 illustrates that,
regardless of the architecture that is used, the accuracy of the SDD-CNN is higher than the original
CNN for almost all types of defect. Specifically, for the CI, CSc, EFC, EFI, EFSc, and EFSt types of
defect, both SDD-CNN and the original CNN exhibit an extremely high performance. In the
remaining CQ, CC, CSt, EFQ, and EFSF types of defect, the accuracy of the SDD-Inception v3
increases by 4.46% over the Inception v3 on average, and this number is up to 8.13% for the CQ defect.
The SDD-SqueezeNet v1.1 increases by 6.62% on average, which is up to 12.18% for the CQ defect.
The SDD-VGG16 increases by 7.41% on average, which is up to 11.04% for the EFQ defect. The SDD-
ResNet18 increases by 6.75% on average, which is up to 14.38% for the CQ defect. Furthermore, as
shown in Figure 9, the SDD-CNN is always superior to the original CNN in terms of convergence
speed and accuracy, regardless of the network architecture. This verifies the effectiveness and
robustness of the method proposed in this paper in the classification and detection of roller surface
defects.

Figure 8. Comparison of validation accuracy for different models with different strategies.

0

20

40

60

80

Inception
v3

SqueezeNet
v1.1

VGG16 ResNet18

El
ap

se
d

(m
in

)

Deep SDD SDD from scratch From scratch

0

4

8

12

16

20

Inception
v3

SqueezeNet
v1.1

VGG16 ResNet18
Ep

oc
h

(s
)

Deep SDD SDD from scratch From scratch

75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-Inception v3
SDD-Inception v3
Inception v3 75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-SqueezeNet v1.1
SDD-SqueezeNet v1.1
SqueezeNet v1.1

75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-VGG16
SDD-VGG16
VGG16

75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-ResNet18
SDD-ResNet18
ResNet18

Figure 7. Comparison of elapse and epoch for convergence for different models.

In addition to surveying the convergence speed of the model, the accuracy of the verification
set is an important indicator when considering the training performance. Figure 8 illustrates that,
regardless of the architecture that is used, the accuracy of the SDD-CNN is higher than the original
CNN for almost all types of defect. Specifically, for the CI, CSc, EFC, EFI, EFSc, and EFSt types of defect,
both SDD-CNN and the original CNN exhibit an extremely high performance. In the remaining CQ,
CC, CSt, EFQ, and EFSF types of defect, the accuracy of the SDD-Inception v3 increases by 4.46% over
the Inception v3 on average, and this number is up to 8.13% for the CQ defect. The SDD-SqueezeNet
v1.1 increases by 6.62% on average, which is up to 12.18% for the CQ defect. The SDD-VGG16 increases
by 7.41% on average, which is up to 11.04% for the EFQ defect. The SDD-ResNet18 increases by 6.75%
on average, which is up to 14.38% for the CQ defect. Furthermore, as shown in Figure 9, the SDD-CNN
is always superior to the original CNN in terms of convergence speed and accuracy, regardless of the
network architecture. This verifies the effectiveness and robustness of the method proposed in this
paper in the classification and detection of roller surface defects.

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 10 of 16

Figure 7. Comparison of elapse and epoch for convergence for different models.

In addition to surveying the convergence speed of the model, the accuracy of the verification set
is an important indicator when considering the training performance. Figure 8 illustrates that,
regardless of the architecture that is used, the accuracy of the SDD-CNN is higher than the original
CNN for almost all types of defect. Specifically, for the CI, CSc, EFC, EFI, EFSc, and EFSt types of
defect, both SDD-CNN and the original CNN exhibit an extremely high performance. In the
remaining CQ, CC, CSt, EFQ, and EFSF types of defect, the accuracy of the SDD-Inception v3
increases by 4.46% over the Inception v3 on average, and this number is up to 8.13% for the CQ defect.
The SDD-SqueezeNet v1.1 increases by 6.62% on average, which is up to 12.18% for the CQ defect.
The SDD-VGG16 increases by 7.41% on average, which is up to 11.04% for the EFQ defect. The SDD-
ResNet18 increases by 6.75% on average, which is up to 14.38% for the CQ defect. Furthermore, as
shown in Figure 9, the SDD-CNN is always superior to the original CNN in terms of convergence
speed and accuracy, regardless of the network architecture. This verifies the effectiveness and
robustness of the method proposed in this paper in the classification and detection of roller surface
defects.

Figure 8. Comparison of validation accuracy for different models with different strategies.

0

20

40

60

80

Inception
v3

SqueezeNet
v1.1

VGG16 ResNet18

El
ap

se
d

(m
in

)

Deep SDD SDD from scratch From scratch

0

4

8

12

16

20

Inception
v3

SqueezeNet
v1.1

VGG16 ResNet18
Ep

oc
h

(s
)

Deep SDD SDD from scratch From scratch

75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-Inception v3
SDD-Inception v3
Inception v3 75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-SqueezeNet v1.1
SDD-SqueezeNet v1.1
SqueezeNet v1.1

75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-VGG16
SDD-VGG16
VGG16

75

80

85

90

95

100

105

CQ CC CI CSc CSt EFQ EFC EFI EFSc EFSt EFSF

A
cc

ur
ac

y
(%

)

Deep SDD-ResNet18
SDD-ResNet18
ResNet18

Figure 8. Comparison of validation accuracy for different models with different strategies.

Appl. Sci. 2019, 9, 1364 11 of 16
Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 11 of 16

Figure 9. Diagram of convergence time and validation accuracy.

Furthermore, this paper compares the performance of four deep SDD-CNNs for the test set.
Figure 10 shows that the Top-1 accuracy [4] of all four models exceeds 99%, and the Top -5 accuracy
reaches 100%. Among them, SqueezeNet v1.1 has the lowest Top-1 accuracy, and Inception v3 and
VGG16 both exceed 99.5%. Figure 11 shows the recall for each type of roller surface defect. It can be
seen that the four models have a recall of 100% in the six defects of CI, CSc, CSt, EFI, EFSc, and EFSt,
thus showing good stability. Because more than 60% of the region of the roller surface is of the end-
face, and cracks are some of the most common defects on it [2], the recall of the two categories EFQ
and EFC is a critical indicator for evaluating the performance of the classifier. Inception v3 has a recall
of more than 99% in both categories. Considering its shortest training time and outstanding
classification performance, it is the most suitable network model among the four architectures for the
classification of roller surface defects.

Figure 10. Top-1 and Top-5 accuracy of test set across different models.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

97.2000 97.6000 98.0000 98.4000 98.8000 99.2000 99.6000 100.0000

El
ap

se
d

(m
in

)

Accuracy (%)

Inception v3 from scratch
SqueezeNet v1.1 from scratch
VGG16 from scratch
ResNet18 from scratch
SDD Inception v3 from scratch
SDD SqueezeNet v1.1 from scratch
SDD VGG16 from scratch
SDD ResNet18 from scratch
Deep SDD Inception v3
Deep SDD SqueezeNet v1.1
Deep SDD VGG16
Deep SDD ResNet18

Deep SDD-
Inception v3

Deep SDD-
SqueezeNet v1.1

Deep SDD-
VGG16

Deep SDD-
ResNet18

Top-1 99.56% 99.06% 99.67% 99.44%
Top-5 100% 100% 100% 100%

95%
96%
96%
97%
97%
98%
98%
99%
99%

100%
100%

A
cc

ur
ac

y

Figure 9. Diagram of convergence time and validation accuracy.

Furthermore, this paper compares the performance of four deep SDD-CNNs for the test set.
Figure 10 shows that the Top-1 accuracy [4] of all four models exceeds 99%, and the Top -5 accuracy
reaches 100%. Among them, SqueezeNet v1.1 has the lowest Top-1 accuracy, and Inception v3 and
VGG16 both exceed 99.5%. Figure 11 shows the recall for each type of roller surface defect. It can be
seen that the four models have a recall of 100% in the six defects of CI, CSc, CSt, EFI, EFSc, and EFSt,
thus showing good stability. Because more than 60% of the region of the roller surface is of the end-face,
and cracks are some of the most common defects on it [2], the recall of the two categories EFQ and
EFC is a critical indicator for evaluating the performance of the classifier. Inception v3 has a recall of
more than 99% in both categories. Considering its shortest training time and outstanding classification
performance, it is the most suitable network model among the four architectures for the classification
of roller surface defects.

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 11 of 16

Figure 9. Diagram of convergence time and validation accuracy.

Furthermore, this paper compares the performance of four deep SDD-CNNs for the test set.
Figure 10 shows that the Top-1 accuracy [4] of all four models exceeds 99%, and the Top -5 accuracy
reaches 100%. Among them, SqueezeNet v1.1 has the lowest Top-1 accuracy, and Inception v3 and
VGG16 both exceed 99.5%. Figure 11 shows the recall for each type of roller surface defect. It can be
seen that the four models have a recall of 100% in the six defects of CI, CSc, CSt, EFI, EFSc, and EFSt,
thus showing good stability. Because more than 60% of the region of the roller surface is of the end-
face, and cracks are some of the most common defects on it [2], the recall of the two categories EFQ
and EFC is a critical indicator for evaluating the performance of the classifier. Inception v3 has a recall
of more than 99% in both categories. Considering its shortest training time and outstanding
classification performance, it is the most suitable network model among the four architectures for the
classification of roller surface defects.

Figure 10. Top-1 and Top-5 accuracy of test set across different models.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

97.2000 97.6000 98.0000 98.4000 98.8000 99.2000 99.6000 100.0000

El
ap

se
d

(m
in

)

Accuracy (%)

Inception v3 from scratch
SqueezeNet v1.1 from scratch
VGG16 from scratch
ResNet18 from scratch
SDD Inception v3 from scratch
SDD SqueezeNet v1.1 from scratch
SDD VGG16 from scratch
SDD ResNet18 from scratch
Deep SDD Inception v3
Deep SDD SqueezeNet v1.1
Deep SDD VGG16
Deep SDD ResNet18

Deep SDD-
Inception v3

Deep SDD-
SqueezeNet v1.1

Deep SDD-
VGG16

Deep SDD-
ResNet18

Top-1 99.56% 99.06% 99.67% 99.44%
Top-5 100% 100% 100% 100%

95%
96%
96%
97%
97%
98%
98%
99%
99%

100%
100%

A
cc

ur
ac

y

Figure 10. Top-1 and Top-5 accuracy of test set across different models.

Appl. Sci. 2019, 9, 1364 12 of 16Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 12 of 16

(a) (b)

(c) (d)

Figure 11. Confusion matrixes for different models: (a) deep SDD-Inception v3; (b) SDD-SqueezeNet
v1.1; (c) deep SDD-ResNet18; (d) deep SDD-VGG16.

4.3. Model Visualizations

To evaluate a deep learning model more effectively, the most intuitive method shows the
distribution of samples in the feature space directly. T-distributed stochastic neighbor embedding (t-
SNE) [40,41] is currently the most popular dimension reduction algorithm for high-dimensional data
and is commonly used for deep network visualization [11].

Figure 12 shows the t-SNE distribution of all training samples in the above four deep SDD-CNNs.
Apparently, in the feature space of the deep SDD-Inception v3 model, all 11 types of roller samples
have an excellent degree of discrimination. This result is also consistent with the conclusions of the
previous section. The other three models (deep SDD-SqueezeNet v1.1, deep SDD-VGG16, and deep
SDD-ResNet18) have some categories that do not achieve perfect segmentation. The discrimination
of deep SDD-SqueezeNet v1.1 for the CC and CQ samples is particularly low, which is also consistent
with the recall in Figure 11. In summary, no matter what the convergence speed, accuracy, or
distribution of the feature space, the deep SDD-Inception v3 model has an excellent performance in
the classification and detection of roller surface defects.

Figure 11. Confusion matrixes for different models: (a) deep SDD-Inception v3; (b) SDD-SqueezeNet
v1.1; (c) deep SDD-ResNet18; (d) deep SDD-VGG16.

4.3. Model Visualizations

To evaluate a deep learning model more effectively, the most intuitive method shows the
distribution of samples in the feature space directly. T-distributed stochastic neighbor embedding
(t-SNE) [40,41] is currently the most popular dimension reduction algorithm for high-dimensional
data and is commonly used for deep network visualization [11].

Figure 12 shows the t-SNE distribution of all training samples in the above four deep SDD-CNNs.
Apparently, in the feature space of the deep SDD-Inception v3 model, all 11 types of roller samples
have an excellent degree of discrimination. This result is also consistent with the conclusions of the
previous section. The other three models (deep SDD-SqueezeNet v1.1, deep SDD-VGG16, and deep
SDD-ResNet18) have some categories that do not achieve perfect segmentation. The discrimination of
deep SDD-SqueezeNet v1.1 for the CC and CQ samples is particularly low, which is also consistent with
the recall in Figure 11. In summary, no matter what the convergence speed, accuracy, or distribution of
the feature space, the deep SDD-Inception v3 model has an excellent performance in the classification
and detection of roller surface defects.

Appl. Sci. 2019, 9, 1364 13 of 16Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 13 of 16

(a) (b)

(c) (d)

Figure 12. Comparison of t-SNE across the four networks at the end of training: (a) Deep SDD-
Inception v3; (b) Deep SDD-SqueezeNet v1.1; (c) Deep SDD-VGG16; (d) Deep SDD-ResNet18.

To further explore the classification basis of the deep SDD-Inception v3 model for each category
of samples, this paper conducts an occlusion experiment to analyze the corresponding intensities of
different regions of the samples. In this experiment, a gray rectangle is used to block each part of the
input image to test the characteristic response intensity of the uppermost convolution layer of the
network. As shown in Figure 13, when an occlusion occurs in the background region of the sample,
the intensity remains substantially unchanged; and when the rectangle blocks the critical position of
the defect, it sharply decreases. The deep SDD-Inception v3 model can accurately locate the features
of different types of roller surfaces and make precise classification judgments.

(a) (b)

Figure 12. Comparison of t-SNE across the four networks at the end of training: (a) Deep SDD-Inception
v3; (b) Deep SDD-SqueezeNet v1.1; (c) Deep SDD-VGG16; (d) Deep SDD-ResNet18.

To further explore the classification basis of the deep SDD-Inception v3 model for each category
of samples, this paper conducts an occlusion experiment to analyze the corresponding intensities of
different regions of the samples. In this experiment, a gray rectangle is used to block each part of the
input image to test the characteristic response intensity of the uppermost convolution layer of the
network. As shown in Figure 13, when an occlusion occurs in the background region of the sample,
the intensity remains substantially unchanged; and when the rectangle blocks the critical position of
the defect, it sharply decreases. The deep SDD-Inception v3 model can accurately locate the features of
different types of roller surfaces and make precise classification judgments.

Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 13 of 16

(a) (b)

(c) (d)

Figure 12. Comparison of t-SNE across the four networks at the end of training: (a) Deep SDD-
Inception v3; (b) Deep SDD-SqueezeNet v1.1; (c) Deep SDD-VGG16; (d) Deep SDD-ResNet18.

To further explore the classification basis of the deep SDD-Inception v3 model for each category
of samples, this paper conducts an occlusion experiment to analyze the corresponding intensities of
different regions of the samples. In this experiment, a gray rectangle is used to block each part of the
input image to test the characteristic response intensity of the uppermost convolution layer of the
network. As shown in Figure 13, when an occlusion occurs in the background region of the sample,
the intensity remains substantially unchanged; and when the rectangle blocks the critical position of
the defect, it sharply decreases. The deep SDD-Inception v3 model can accurately locate the features
of different types of roller surfaces and make precise classification judgments.

(a) (b)

Figure 13. Cont.

Appl. Sci. 2019, 9, 1364 14 of 16Appl. Sci. 2019, 1, 12 FOR PEER REVIEW 14 of 16

(c) (d)

(e) (f)

Figure 13. Occlusion experiments on a couple of roller surface defect images: (a) CC; (b) CSc; (c) CSt;
(d) CSt; (e) EFC; (f) EFSF.

5. Conclusions

To solve the problem of classification and inspection of subtle defects on roller surfaces by deep
learning, a small data-driven convolutional neural network is proposed in this paper. At present, the
difficulty of this issue is that the shape of the defects is extremely unobservable and the occurrence
probability is low, which makes the number of samples insufficient and the distribution extremely
unbalanced. For this reason, this paper first adopted the label dilation method to solve the imbalance
in the sample distribution. Then, a semi-supervised data augmentation method was proposed. The
feature response map of each sample was generated through a pretrained coarse network to guide
the pseudorandom cropping of samples and realize more accurate data expansion. Next, four state-
of-the-art CNN architectures were introduced and trained for the roller defect classification task.
Finally, a series of experiments were conducted to verify that the proposed SDD-CNN is significantly
superior to the original CNN model in terms of convergence speed, training time, and classification
accuracy. In particular, the SDD-inception v3 using a deep transfer learning strategy achieved a
99.56% Top-1 accuracy on the test set, and a visualization experiment also proved the reliability of
the model. Overall, the deep-learning-based roller defect classifier presented in this paper provides
a clear path toward higher reliability and stability in actual production.

Author Contributions: Conceptualization, X.X. and H.Z.; methodology and software, X.X.; validation and
formal analysis, Z.G. and Z.Z.; writing, X.X. and Z.G.; supervision and project administration, H.Z.; funding
acquisition, X.W.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 61771352).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, B. Research on Surface Defect Detection of Bearing Roller Based on Machine Vision. Master’s Thesis,
Nanchang Hangkong University, Nanchang, China, June 2018.

2. Shen, H.; Li, S.; Gu, D.; Chang, H. Bearing defect inspection based on machine vision. Measurement 2012,
45, 719–733.

3. Zheng, Z.; Ma, Y.; Zheng, H.; Ju, J.; Lin, M. UGC: Real-time, ultra-robust feature correspondence via

Figure 13. Occlusion experiments on a couple of roller surface defect images: (a) CC; (b) CSc; (c) CSt;
(d) CSt; (e) EFC; (f) EFSF.

5. Conclusions

To solve the problem of classification and inspection of subtle defects on roller surfaces by deep
learning, a small data-driven convolutional neural network is proposed in this paper. At present,
the difficulty of this issue is that the shape of the defects is extremely unobservable and the occurrence
probability is low, which makes the number of samples insufficient and the distribution extremely
unbalanced. For this reason, this paper first adopted the label dilation method to solve the imbalance
in the sample distribution. Then, a semi-supervised data augmentation method was proposed.
The feature response map of each sample was generated through a pretrained coarse network to
guide the pseudorandom cropping of samples and realize more accurate data expansion. Next,
four state-of-the-art CNN architectures were introduced and trained for the roller defect classification
task. Finally, a series of experiments were conducted to verify that the proposed SDD-CNN is
significantly superior to the original CNN model in terms of convergence speed, training time,
and classification accuracy. In particular, the SDD-inception v3 using a deep transfer learning strategy
achieved a 99.56% Top-1 accuracy on the test set, and a visualization experiment also proved the
reliability of the model. Overall, the deep-learning-based roller defect classifier presented in this paper
provides a clear path toward higher reliability and stability in actual production.

Author Contributions: Conceptualization, X.X. and H.Z.; methodology and software, X.X.; validation and
formal analysis, Z.G. and Z.Z.; writing, X.X. and Z.G.; supervision and project administration, H.Z.; funding
acquisition, X.W.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 61771352).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, B. Research on Surface Defect Detection of Bearing Roller Based on Machine Vision. Master’s Thesis,
Nanchang Hangkong University, Nanchang, China, June 2018.

2. Shen, H.; Li, S.; Gu, D.; Chang, H. Bearing defect inspection based on machine vision. Measurement 2012, 45,
719–733. [CrossRef]

http://dx.doi.org/10.1016/j.measurement.2011.12.018

Appl. Sci. 2019, 9, 1364 15 of 16

3. Zheng, Z.; Ma, Y.; Zheng, H.; Ju, J.; Lin, M. UGC: Real-time, ultra-robust feature correspondence via unilateral
grid-based clustering. IEEE Access 2018, 6, 55501–55508. [CrossRef]

4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the 2012 International Conference on Neural Information Processing Systems, Lake Tahoe,
ND, USA, 3–6 December 2012; pp. 1097–1105.

5. Chen, Z.; Deng, S.; Chen, X.; Li, C.; Sanchez, R.; Qin, H. Deep neural networks-based rolling bearing fault
diagnosis. Microelectron. Reliab. 2017, 75, 327–333. [CrossRef]

6. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training
methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal
Process. 2018, 100, 439–453. [CrossRef]

7. Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using
ensemble deep auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [CrossRef]

8. Li, X.; Zhang, W.; Ding, Q. A robust intelligent fault diagnosis method for rolling element bearings based on
deep distance metric learning. Neurocomputing 2018, 310, 77–95. [CrossRef]

9. Gan, M.; Wang, C.; Zhu, C. Construction of hierarchical diagnosis network based on deep learning and its
application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016,
72–73, 92–104. [CrossRef]

10. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review.
Engineering 2017, 3, 616–630. [CrossRef]

11. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and
applications. J. Manuf. Syst. 2018, 48, 144–156. [CrossRef]

12. Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of deep convolution neural network architectures for
automated feature extraction in industrial inspection. CIRP Ann. Manuf. Technol. 2016, 65, 417–420.
[CrossRef]

13. Ren, R.; Hung, T.; Tan, K.C. A generic deep-learning-based approach for automated surface inspection.
IEEE Trans. Cybern. 2017, 99, 929–940. [CrossRef]

14. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection
using region-based deep learning for detecting multiple damage types. Comput. Aided Civ. Infrastruct. Eng.
2017, 33, 731–747. [CrossRef]

15. Park, J.K.; Kwon, B.K.; Park, J.H.; Kang, D.J. Machine learning-based imaging system for surface defect
inspection. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 303–310. [CrossRef]

16. Chen, Z.Q.; Li, C.; Sanchez, R.V. Gearbox fault identification and classification with convolution neural
networks. Shock Vib. 2015, 2015, 390134.

17. Wang, P.; Ananya, Y.R.; Gao, R.X. Virtualization and deep recognition for system fault classification. J. Manuf.
Syst. 2017, 44, 310–316. [CrossRef]

18. Dong, H.; Yang, L.; Li, H. Small fault diagnosis of front-end speed controlled wind generator based on deep
learning. WSEAS Trans. Circuits Syst. 2016, 15, 64–72.

19. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Walle, R.V.d.; Hoecke, S.V.
Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345.
[CrossRef]

20. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based
gated recurrent unit network. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [CrossRef]

21. Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using
vanilla LSTM neural networks. Neurocomputing 2017, 226, 853–860. [CrossRef]

22. Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolution bi-directional
LSTM networks. Sensors 2017, 17, 273. [CrossRef]

23. Wang, P.; Gao, R.X.; Yan, R. A deep learning-based approach to material removal rate prediction in polishing.
CIRP Ann. Manuf. Technol. 2017, 66, 429–432. [CrossRef]

24. Deutsch, J.; He, M.; He, D. Remaining useful life prediction of hybrid ceramic bearings using an integrated
deep learning and particle filter approach. Appl. Sci. 2017, 7, 649. [CrossRef]

25. Zhang, W.; Duan, P.; Yang, L.T.; Xia, F.; Li, Z.; Lu, Q.; Gong, W.; Yang, S. Resource requests prediction in the
cloud computing environment with a deep belief network. Softw. Pract. Exp. 2017, 47, 473–488. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2871729
http://dx.doi.org/10.1016/j.microrel.2017.03.006
http://dx.doi.org/10.1016/j.ymssp.2017.06.022
http://dx.doi.org/10.1016/j.ymssp.2017.09.026
http://dx.doi.org/10.1016/j.neucom.2018.05.021
http://dx.doi.org/10.1016/j.ymssp.2015.11.014
http://dx.doi.org/10.1016/J.ENG.2017.05.015
http://dx.doi.org/10.1016/j.jmsy.2018.01.003
http://dx.doi.org/10.1016/j.cirp.2016.04.072
http://dx.doi.org/10.1109/TCYB.2017.2668395
http://dx.doi.org/10.1111/mice.12334
http://dx.doi.org/10.1007/s40684-016-0039-x
http://dx.doi.org/10.1016/j.jmsy.2017.04.012
http://dx.doi.org/10.1016/j.jsv.2016.05.027
http://dx.doi.org/10.1109/TIE.2017.2733438
http://dx.doi.org/10.1016/j.neucom.2017.05.063
http://dx.doi.org/10.3390/s17020273
http://dx.doi.org/10.1016/j.cirp.2017.04.013
http://dx.doi.org/10.3390/app7070649
http://dx.doi.org/10.1002/spe.2426

Appl. Sci. 2019, 9, 1364 16 of 16

26. Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network
approach for induction motor faults classification. Measurement 2016, 89, 171–178. [CrossRef]

27. Yang, Z.; Wang, X.; Zhong, J. Representational learning for fault diagnosis of wind turbine equipment:
A multi-layered extreme learning machines approach. Energies 2016, 9, 379. [CrossRef]

28. Wang, L.; Zhao, X.; Pei, J.; Tang, G. Transformer fault diagnosis using continuous sparse auto encoder.
SpingerPlus 2016, 5, 448. [CrossRef] [PubMed]

29. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural
networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

30. Mohanty, S.P.; Hughes, D.P.; Marcel, S. Using deep learning for image-based plant disease detection. Front.
Plant Sci. 2016, 7, 1419. [CrossRef] [PubMed]

31. Iandola, F.N.; Han, S.; Moskewicz, M.W. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5 MB model size. arXiv, 2016; arXiv:1602.07360.

32. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J. Rethinking the Inception Architecture for Computer Vision.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 26 June–1 July 2016; pp. 2818–2826.

33. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv,
2014, arXiv:1409.1556.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016
IEEE conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016; pp. 770–778.

35. Shen, L.; Lin, Z.; Huang, Q. Relay backpropagation for effective learning of deep convolutional neural
networks. In Proceedings of the 2016 European Conference on Computer Vision (ECCV), Amsterdam,
The Netherlands, 8–16 October 2016; pp. 467–482.

36. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative
Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2921–2929.

37. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the 2014
European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 1–16.

38. Szegedy, C. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 1–9.

39. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 1–4.

40. Maaten, L.V.d.; Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 2008, 9, 2579–2605.
41. Maaten, L.V.d. Accelerating t-sne using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2016.04.007
http://dx.doi.org/10.3390/en9060379
http://dx.doi.org/10.1186/s40064-016-2107-7
http://www.ncbi.nlm.nih.gov/pubmed/27119052
http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Materials and Methods
	Overview of Proposed Method
	Small Data Preprocessing
	Label Dilation
	Semi-Supervised Data Augmentation

	CNN Architectures
	SqueezeNet v1.1
	Inception v3
	VGG-16
	ResNet-18

	Experiments and Results
	Experimental Setup
	Network Training and Performance Metrics
	Model Visualizations

	Conclusions
	References

