SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detector Concept
- The core of each sector is the SAFIR Digital Interface Board PETA (SDIP), which has connections to the DHMs, a SAFIR Bias and Temperature (SBT) Printed Circuit Board (PCB) and the DAQ computer via a commercial optical Gigabit Small Form-factor Pluggable (SFP) transceiver module.
- Three identical DHMs incorporating the MPPC arrays (two per module) and the PETA6SEs (four per module). The DHMs interconnect MPPCs, SAFIR PETA6 Board (SP6) and SDIP.
- One SBT board, providing bias voltage to the MPPCs on all three DHMs.
- Five DC-DC SAFIR Power Converters (SPOWs), powering the three DHMs (one converter each) and the SDIP (two converters).
- One SAFIR Secondary Power Distribution (SSPD) board; a passive board hosting the SPOWs powering DHMs.
- A mechanical support structure for the different components.
- All necessary cabling.
- SAFIR Fast Control Master (SFCM) and SAFIR Fast Control Distribution (SFCD): Control and synchronization boards.
- SAFIR Primary Power Distribution (SPPD): Power distribution for SDIPs and DHMs.
- SAFIR Bias Distribution (SBD): Power distribution for the SBTs.
2.2. Mechanical Structure and Cooling
2.2.1. Mechanical Structure
- Provide a solid and precise structure for exact crystal alignment.
- Offer reliable RF shielding of SAFIR-I from the MRI system, and vice versa.
- Facilitate good air cooling.
- Be modular and practical to work on.
2.2.2. Carbon Fiber Structure Building Techniques
2.2.3. SAFIR-I Air Cooling System
2.3. Detector Head Module
2.4. Electronics
2.4.1. PETA6SE Signal Processing
2.4.2. Digital Interface Board
2.4.3. Synchronization and Fast Control
2.4.4. Bias Voltage System
2.4.5. Power Supply, Conversion and Distribution
2.4.6. Data Acquisition and Control
2.5. DAQ Software
2.6. Data Calibration & Processing
2.6.1. Calibration
2.6.2. Data Processing
2.7. Image Reconstruction
2.8. Measurements
2.8.1. Interference of SAFIR-I with the MRI System
- Baseline: the MRI system alone, without SAFIR inserted.
- Unpowered: with SAFIR inserted but not powered at all.
- Powered: with SAFIR inserted and fully powered, bias voltages off.
- Readout-ready: with SAFIR inserted and fully powered, bias voltages on.
- Readout: with SAFIR inserted and fully powered, while actively acquiring and transmitting event data.
- Baseline: SAFIR (fully powered) inside the static magnetic field of the MRI system.
- High-rate test: SAFIR actively acquiring and transmitting event data from a high-activity source.
2.8.2. Interference of the MRI System with SAFIR-I
2.8.3. Coincidence Energy Resolution, Coincidence Resolving Time and Estimated Peak Sensitivity
2.8.4. Truly Simultaneous PET/MR Imaging of a Rat Brain In Vivo
3. Results
3.1. Interference of SAFIR-I with the MRI System
3.2. Interference of the MRI System with SAFIR-I
3.3. Coincidence Energy Resolution, Coincidence Resolving Time and Peak Sensitivity
3.4. Truly Simultaneous PET/MR Imaging of a Rat Brain In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog-to-Digital Converter |
APD | Avalanche Photo Diode |
ASIC | Application Specific Integrated Circuit |
CBF | Cerebral Blood Flow |
CNC | Computerized Numerical Control |
CPU | Central Processing Unit |
CRT | Coincidence Resolving Time |
CT | Computed Tomography |
CTW | Coincidence Timing Window |
DAC | Digital-to-Analog Converter |
DAQ | Data Acquisition |
DHM | Detector Head Module |
DOI | Depth Of Interaction |
dSiPM | digital SiPM |
EPI | Echo-Planar-Imaging |
FDG | 18F-Fluorodeoxyglucose |
FOV | Field Of View |
FWHM | Full Width at Half Maximum |
FPGA | Field-Programmable Gate Array |
GATE | GEANT4 Application for Emission Tomography |
G-APD | Geiger-mode APD |
GUI | Graphical User Interface |
IC | Integrated Circuit |
ICSR | Inter-Crystal Scatter Recovery |
LC | Lucent Connector |
LDO | Low Dropout Regulator |
LGSO | Lutetium Gadolinium Oxyortho Silicate |
LSZH | Low Smoke Zero Halogen |
LVDS | Low Voltage Differential Signaling |
LYSO | Lutetium Yttrium Oxyortho Silicate |
MLEM | Maximum-Likelihood Expectation-Maximization |
MPPC | Multi Pixel Photon Counter |
MR | Magnetic Resonance |
MRI | Magnetic Resonance Imaging |
MTP | Multi-fiber Termination Push-on/Pull-off |
NECR | Noise-Equivalent Count Rate |
NEMA | National Electrical Manufacturers Association |
NEMA-NU4 | NEMA Standards Publication NU 4-2008 |
OSEM | Ordered Subset Expectation Maximization |
OM3 | Optical Multimode 3 |
PCB | Printed Circuit Board |
PET | Positron Emission Tomography |
PETA6SE | Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended |
PLL | Phase-Locked-Loop |
QDC | Charge-to-Digital Converter |
RAM | Random Access Memory |
RF | Radio Frequency |
SAFIR | Small Animal Fast Insert for MRI |
SAFIR-I | Small Animal Fast Insert for MRI detector I |
SAFIR-II | Small Animal Fast Insert for MRI detector II |
SBD | SAFIR Bias Distribution |
SBT | SAFIR Bias and Temperature |
SDIP | SAFIR Digital Interface Board PETA |
SFCD | SAFIR Fast Control Distribution |
SFCM | SAFIR Fast Control Master |
SFP | Small Form-factor Pluggable |
SiPM | Silicon Photomultiplier |
SNR | Signal-to-Noise Ratio |
SPOW | SAFIR Power Converter |
SPPD | SAFIR Primary Power Distribution |
SP6 | SAFIR PETA6 Board |
SSD | Solid State Disk |
SSPD | SAFIR Secondary Power Distribution |
STIR | Software for Tomographic Image Reconstruction |
TAC | Time-Activity Curve |
TDC | Time-to-Digital Converter |
TOF | Time-of-Flight |
UDP | User Datagram-Protocol |
UPC | Ultra Physical Contact |
USB | Universal Serial Bus |
USR | Ultra Shield Refrigerated |
References
- Jones, T.; Townsend, D.W. History and future technical innovation in positron emission tomography. J. Med Imaging 2017, 4, 011013. [Google Scholar] [CrossRef]
- Miyaoka, R.S.; Lehnert, A.L. Small animal PET: A review of what we have done and where we are going. Phys. Med. Biol. 2020, 65, 24TR04. [Google Scholar] [CrossRef]
- Gsell, W.; Molinos, C.; Correcher, C.; Belderbos, S.; Wouters, J.; Junge, S.; Heidenreich, M.; Velde, G.V.; Rezaei, A.; Nuyts, J.; et al. Characterization of a preclinical PET insert in a 7 Tesla MRI scanner: Beyond NEMA testing. Phys. Med. Biol. 2020, 65, 245016. [Google Scholar] [CrossRef]
- Tsoumpas, C.; Visvikis, D.; Loudos, G. Innovations in small-animal PET/MR imaging instrumentation. PET Clin. 2016, 11, 105–118. [Google Scholar] [CrossRef]
- Catana, C.; Wu, Y.; Judenhofer, M.S.; Qi, J.; Pichler, B.J.; Cherry, S.R. Simultaneous acquisition of multislice PET and MR images: Initial results with a MR-compatible PET scanner. J. Nucl. Med. 2006, 47, 1968–1976. [Google Scholar]
- Haemisch, Y.; Frach, T.; Degenhardt, C.; Thon, A. Fully digital arrays of silicon photomultipliers (dSiPM)–a scalable alternative to vacuum photomultiplier tubes (PMT). Phys. Procedia 2012, 37, 1546–1560. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.; Eriksson, L.; Westerwoudt, V. Estimating image quality for future generations of TOF PET scanners. IEEE Trans. Nucl. Sci. 2013, 60, 87–94. [Google Scholar] [CrossRef]
- Conti, M.; Bendriem, B. The new opportunities for high time resolution clinical TOF PET. Clin. Transl. Imaging 2019, 7, 139–147. [Google Scholar] [CrossRef]
- Reddin, J.S.; Scheuermann, J.S.; Bharkhada, D.; Smith, A.M.; Casey, M.E.; Conti, M.; Karp, J.S. Performance evaluation of the SiPM-based Siemens Biograph Vision PET/CT system. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, NSW, Australia, 10–17 November 2018; pp. 1–5. [Google Scholar]
- Tsoumpas, C. Why ultrafast is ultra-good. Phys. World 2020, 33, 41. [Google Scholar] [CrossRef]
- España, S.; Marcinkowski, R.; Keereman, V.; Vandenberghe, S.; Van Holen, R. DigiPET: Sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators. Phys. Med. Biol. 2014, 59, 3405. [Google Scholar] [CrossRef]
- Weissler, B.; Gebhardt, P.; Dueppenbecker, P.M.; Wehner, J.; Schug, D.; Lerche, C.W.; Goldschmidt, B.; Salomon, A.; Verel, I.; Heijman, E.; et al. A digital preclinical PET/MRI insert and initial results. IEEE Trans. Med. Imaging 2015, 34, 2258–2270. [Google Scholar] [CrossRef] [Green Version]
- Bruker. True Trimodal Preclinical PET SPECT CT System. Available online: https://www.bruker.com/ (accessed on 11 October 2021).
- Gu, Z.; Taschereau, R.; Vu, N.T.; Prout, D.L.; Silverman, R.W.; Lee, J.T.; Chatziioannou, A.F. Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph. J. Nucl. Med. 2019, 60, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, J.; Liang, X.; Niu, M.; Wu, X.; Kao, C.M.; Kim, H.; Xie, Q. Performance evaluation of the Trans-PET® BioCaliburn® LH system: A large FOV small-animal PET system. Phys. Med. Biol. 2014, 60, 137. [Google Scholar] [CrossRef]
- Amirrashedi, M.; Zaidi, H.; Ay, M.R. Advances in preclinical PET instrumentation. PET Clin. 2020, 15, 403–426. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Nagy, K.; Patay, G.; Molnár, M.; Rosenqvist, G.; Tóth, M.; Takano, A.; Gulyás, B.; Major, P.; Halldin, C.; et al. Performance evaluation of a high-resolution nonhuman primate PET/CT system. J. Nucl. Med. 2019, 60, 1818–1824. [Google Scholar] [CrossRef]
- Badawi, R.D.; Shi, H.; Hu, P.; Chen, S.; Xu, T.; Price, P.M.; Ding, Y.; Spencer, B.A.; Nardo, L.; Liu, W.; et al. First human imaging studies with the EXPLORER total-body PET scanner. J. Nucl. Med. 2019, 60, 299–303. [Google Scholar] [CrossRef]
- Ritzer, C.; Commichau, V.; Dhawan, S.; Fischer, J.; Lustermann, W.; Sumner, R.; Warnock, G.; Dissertori, G. Compact MR-compatible DC-DC converter module. J. Instrum. 2019, 14, P09016. [Google Scholar] [CrossRef]
- Schulz, V.; Solf, T.; Weissler, B.; Gebhardt, P.; Fischer, P.; Ritzert, M.; Mlotok, V.; Piemonte, C.; Zorzi, N.; Melchiorri, M.; et al. A preclinical PET/MR insert for a human 3T MR scanner. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 2577–2579. [Google Scholar] [CrossRef]
- Vaska, P.; Purschke, M.L.; Fried, J.; Junnarkar, S.; Gualtieri, E.; Pickup, S.; Karp, J.; Stoll, S.; Maramraju, S.H.; Ravindranath, B.; et al. An MRI-compatible PET insert for whole body studies in rodents at high functional and anatomical resolution. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 3169–3172. [Google Scholar] [CrossRef]
- Matsuda, H. Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann. Nucl. Med. 2001, 15, 85–92. [Google Scholar] [CrossRef]
- Soares, B.P.; Tong, E.; Hom, J.; Cheng, S.C.; Bredno, J.; Boussel, L.; Smith, W.S.; Wintermark, M. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: A proof of concept using CT in acute ischemic stroke patients. Stroke 2010, 41, e34–e40. [Google Scholar] [CrossRef] [Green Version]
- del Zoppo, G.J.; Hamann, G.F. The cerebral microvasculature and responses to ischemia. In Stroke; Elsevier: Amsterdam, The Netherlands, 2011; pp. 16–28. [Google Scholar]
- De Silva, D.A.; Fink, J.N.; Christensen, S.; Ebinger, M.; Bladin, C.; Levi, C.R.; Parsons, M.; Butcher, K.; Barber, P.A.; Donnan, G.A.; et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke 2009, 40, 2872–2874. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Casella, C.; Dissertori, G.; Fischer, J.; Howard, A.; Jeitler, A.; Lustermann, W.; Roeser, U.; Wang, Q.; Weber, B. The SAFIR project: An innovative high rate preclinical PET/MR detector towards dynamic multimodal imaging. In EJNMMI Physics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, p. 1. [Google Scholar]
- Ritzer, C.; Becker, R.; Buck, A.; Commichau, V.; Debus, J.; Djambazov, L.; Eleftheriou, A.; Fischer, J.; Fischer, P.; Ito, M.; et al. Initial Characterization of the SAFIR Prototype PET-MR Scanner. IEEE Trans. Radiat. Plasma Med Sci. 2020, 4, 613–621. [Google Scholar] [CrossRef]
- NEMA. Performance Measurements of Small Animal Positron Emission Tomographs (PETs); NEMA Standards Publication: Rosslyn, VA, USA, 2008. [Google Scholar]
- Berg, E.; Zhang, X.; Bec, J.; Judenhofer, M.S.; Patel, B.; Peng, Q.; Kapusta, M.; Schmand, M.; Casey, M.E.; Tarantal, A.F.; et al. Development and evaluation of mini-EXPLORER: A long axial field-of-view PET scanner for nonhuman primate imaging. J. Nucl. Med. 2018, 59, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Lv, X.; Liu, W.; Judenhofer, M.S.; Zwingenberger, A.; Wisner, E.; Berg, E.; McKenney, S.; Leung, E.; Spencer, B.A.; et al. Mini EXPLORER II: A prototype high-sensitivity PET/CT scanner for companion animal whole body and human brain scanning. Phys. Med. Biol. 2019, 64, 075004. [Google Scholar] [CrossRef]
- Bao, Q.; Newport, D.; Chen, M.; Stout, D.B.; Chatziioannou, A.F. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J. Nucl. Med. 2009, 50, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Khateri, P.; Lustermann, W.; Ritzer, C.; Tsoumpas, C.; Dissertori, G. Performance Characterization of the SAFIR Prototype PET Insert. EJNMMI Phys. 2021. [Google Scholar] [CrossRef]
- Dohle, R.; Sacco, I.; Rittweg, T.; Friedrich, T.; Henning, G.; Goßler, J.; Fischer, P. LTCC-Based Highly Integrated SiPM Module with Integrated Liquid Cooling Channels for High Resolution Molecular Imaging. J. Microelectron. Electron. Packag. 2018, 15, 86–94. [Google Scholar] [CrossRef]
- Sacco, I.; Dohle, R.; Fischer, P.; Piemonte, C.; Ritzert, M. A compact, high-density gamma-detection module for Time-of-Flight measurements in PET applications. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 824, 233–236. [Google Scholar] [CrossRef]
- Gross-Weege, N.; Dey, T.; Gebhardt, P.; Schug, D.; Weissler, B.; Schulz, V. Characterization methods for comprehensive evaluations of shielding materials used in an MRI. Med. Phys. 2018, 45, 1415–1424. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Schrank, F.; Gross-Weege, N.; Schug, D.; Schulz, V. RF shielding materials for highly-integrated PET/MRI systems. Phys. Med. Biol. 2021, 66, 09NT01. [Google Scholar] [CrossRef]
- Peng, B.; Wu, Y.; Cherry, S.; Walton, J. Effective RF shielding with carbon fiber composites for simultaneous PET/MRI. Proc. Intl. Soc. Mag. Reson. Med. 2009, 17, 3085. [Google Scholar]
- Ritzer, C.E. Development and First Performance Tests of the SAFIR Prototype PET-MR Scanner. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2020. [Google Scholar]
- Keysight Technologies. E3640A-E3649A Programmable DC Power Supplies; Data Sheet; Keysight Technologies: Santa Rosa, CA, USA, 2018. [Google Scholar]
- TDK-Lambda. Z+ Series 2U LV Programmable DC Power Supplies Brochure; Data Sheet; TDK-Lambda: Achern, Germany, 2012. [Google Scholar]
- Apache ThriftTM Software Framework. Available online: https://thrift.apache.org/ (accessed on 30 June 2021).
- Thielemans, K.; Tsoumpas, C.; Mustafovic, S.; Beisel, T.; Aguiar, P.; Dikaios, N.; Jacobson, M.W. STIR: Software for tomographic image reconstruction release 2. Phys. Med. Biol. 2012, 57, 867. [Google Scholar] [CrossRef] [Green Version]
- Khateri, P.; Fischer, J.; Lustermann, W.; Tsoumpas, C.; Dissertori, G. Implementation of cylindrical PET scanners with block detector geometry in STIR. EJNMMI Phys. 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- PMOD Software. Available online: https://www.pmod.com/web/ (accessed on 27 July 2021).
- Khan, A.R.; Kroenke, C.D.; Wiborg, O.; Chuhutin, A.; Nyengaard, J.R.; Hansen, B.; Jespersen, S.N. Differential microstructural alterations in rat cerebral cortex in a model of chronic mild stress depression. PLoS ONE 2018, 13, e0192329. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P.; Schulz, V. FPGA-based RF interference reduction techniques for simultaneous PET–MRI. Phys. Med. Biol. 2016, 61, 3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omidvari, N.; Topping, G.; Cabello, J.; Paul, S.; Schwaiger, M.; Ziegler, S.I. MR-compatibility assessment of MADPET4: A study of interferences between an SiPM-based PET insert and a 7 T MRI system. Phys. Med. Biol. 2018, 63, 095002. [Google Scholar] [CrossRef] [PubMed]
- Conti, M. Effect of randoms on signal-to-noise-ratio in TOF PET. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Fajardo, PR, USA, 23–29 October 2005; Volume 3, p. 6. [Google Scholar]
Condition | SNR [ ] | Deviation from Baseline [%] |
---|---|---|
Baseline | 2532 ± 6 | – |
Unpowered | 2622 ± 8 | +3.6 ± 0.4 |
Powered | 2607 ± 9 | +3.0 ± 0.4 |
Readout-ready | 2614 ± 14 | +3.2 ± 0.6 |
Readout | 2623 ± 12 | +3.6 ± 0.5 |
Condition | SNR [ ] | Deviation from Baseline [%] |
---|---|---|
Baseline | 2502 ± 4 | – |
High-rate test | 2441 ± 7 | −2.44 ± 0.32 |
Condition | CRT | Energy Resolution | Count Value |
---|---|---|---|
Static B (baseline) | % | 1 | |
T1-FLASH | % | ||
T2-TurboRARE | % | ||
EPI-LR | % | ||
EPI-HF | % |
Condition | CRT | Energy Resolution | Count Value |
---|---|---|---|
Static B (baseline) | % | 1 | |
T1-FLASH | % | ||
T2-TurboRARE | % | ||
EPI-LR | % | ||
EPI-HF | % |
Parameter | Low Decay Rate Value | High Decay Rate Value |
---|---|---|
CRT | ||
Energy resolution | % | % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bebié, P.; Becker, R.; Commichau, V.; Debus, J.; Dissertori, G.; Djambazov, L.; Eleftheriou, A.; Fischer, J.; Fischer, P.; Ito, M.; et al. SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI. Sensors 2021, 21, 7037. https://doi.org/10.3390/s21217037
Bebié P, Becker R, Commichau V, Debus J, Dissertori G, Djambazov L, Eleftheriou A, Fischer J, Fischer P, Ito M, et al. SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI. Sensors. 2021; 21(21):7037. https://doi.org/10.3390/s21217037
Chicago/Turabian StyleBebié, Pascal, Robert Becker, Volker Commichau, Jan Debus, Günther Dissertori, Lubomir Djambazov, Afroditi Eleftheriou, Jannis Fischer, Peter Fischer, Mikiko Ito, and et al. 2021. "SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI" Sensors 21, no. 21: 7037. https://doi.org/10.3390/s21217037
APA StyleBebié, P., Becker, R., Commichau, V., Debus, J., Dissertori, G., Djambazov, L., Eleftheriou, A., Fischer, J., Fischer, P., Ito, M., Khateri, P., Lustermann, W., Ritzer, C., Ritzert, M., Röser, U., Tsoumpas, C., Warnock, G., Weber, B., Wyss, M. T., & Zagozdzinska-Bochenek, A. (2021). SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI. Sensors, 21(21), 7037. https://doi.org/10.3390/s21217037