Peak-Load-Regulation Nuclear Power Unit Fault Diagnosis Using Thermal Sensors Combined with Improved ICA-RF Algorithm
Abstract
:1. Introduction
2. Analyzing Techniques
2.1. Blind Source Separation
2.1.1. Independent Component Analysis Algorithm
2.1.2. Improved-ICA Algorithm
2.2. Random Forest Algorithm
2.3. Data Acquisition
3. Fault Diagnosis Process
- Input original signal;
- Completes the blind source separation by improved ICA;
- Obtain the separated signal feature and remove the noise;
- Taking the signal feature as one of the input values of the classifier;
- 5.
- Take the signal feature and fault labels as the total samples;
- 6.
- The total samples are divided into training samples and test samples;
- 7.
- Initialize the random forest model;
- 8.
- Input training samples and complete the training;
- 9.
- Pass verification? If not, adjust the RF parameters and return to step 8;
- 10.
- Output the trained model;
- 11.
- Select the test sample as the input value of the trained model;
- 12.
- Input test samples and complete the test;
- 13.
- The test results are output and compared.
3.1. The Result of Improved-ICA Algorithm
3.2. Model Training
3.3. Experiments and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Start Step 1: Input data samples Step 2: Calculate the number of rows and columns Define matrix size function as size () Step 3: Calculate the average Define average function as Step 4: Remove mean values Define all 1 matrix function as For (i,:)=(i,:)-(i)*(1, ); End For Step 5: Calculate the covariance Define the covariance function as Step 6: Calculate the feature vector and the feature value Define the feature vector function as Step 7: Calculate the whiten matrix Step 8: Iterative initialization Set iteration steps Set convergence condition Step 9: Initialize and Define random function as Set as nonlinear function Step 10: Iterative operation Define expectation function as Set count=0 If Then count=count+1 If count= Then print(“Unconvergent”) Break Else Goto Step 9 End If Else Output Break End If End |
References
- Shi, X.K.; Yang, J.Y.; Yang, P.; Qian, J.H.; Zhao, J.G. Effects of Peak Load Regulation on Main Steam Turbines of Nuclear Power Units. Zhejiang Electr. Power 2019, 39, 35–39. [Google Scholar]
- Zhao, J.; Liu, D.C.; Yang, N.; Sun, W.T.; Wang, Q. Operation Mode and Benefits of Nuclear Power Plant Participating in Peak Load Regulation of Power System. Power Syst. Technol. 2012, 36, 250–255. [Google Scholar]
- Song, Z.R.; Shang, W.X.; Song, Y.W.; Liu, K.; Lv, Z.H.; Zhang, Z.J. Development of Nuclear Power and Analysis on Peak Shaving. Northeast Electr. Power Technol. 2015, 36, 40–44. [Google Scholar]
- Peng, B.; Yu, W.Q.; Liu, Y. Overview of Foreign Nuclear Power Plants in Load-Following. South Power Syst. Technol. 2011, 5, 23–26. [Google Scholar]
- Gao, Y.; Sheng, G.L.; Lu, W.Y.; Cao, G.H. The Summary of Foreign Nuclear Power Units Operating Mode. Value Eng. 2013, 32, 42–43. [Google Scholar]
- Wu, Y.F.; Li, W.; Sheng, D.R.; Chen, J.H.; Yu, Z.T. Fault Diagnosis Method of Peak-Load-Regulation Steam Turbine Based on Improved PCA-HKNN Artificial Neural Network. Proc. Inst. Mech. Eng. Part. O J. Risk Reliab. 2021, 235, 1026–1040. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.J.; Yang, M.; Xia, G.L.; Wang, H.; Jiang, N.; Ma, Z.G. Design of Comprehensive Diagnosis System in Nuclear Power Plant. Ann. Nucl. Energy 2017, 109, 92–102. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, J.W.; He, C.L.; Ma, H.X. Overview of Market Power Mitigation Measures in North American Electricity Market. Guangdong Electr. Power 2021, 34, 24–33. [Google Scholar]
- Shorthill, T.; Bao, H.; Zhang, H.B.; Ban, H. A Novel Approach for Software Reliability Analysis of Digital Instrumentation and Control Systems in Nuclear Power Plants. Ann. Nucl. Energy 2021, 158, 108260. [Google Scholar] [CrossRef]
- Reichenberg, L.; Hedenus, F.; Odenberger, M.; Johnsson, F. Tailoring Large-Scale Electricity Production from Variable Renewable Energy Sources to Accommodate Baseload Generation in Europe. Renew. Energy 2018, 129, 334–346. [Google Scholar] [CrossRef]
- Choi, Y.S.; Han, E.O.; Lee, S.K. Influence of Nuclear Power Perception by Leadership Groups of South Korea on Nuclear Power Policy. Energy Strategy Rev. 2021, 35, 100654. [Google Scholar] [CrossRef]
- Tripathi, D.; Singh, L.K.; Tripathi, A.K.; Chaturvedi, A. Model Based Security Verification of Cyber-Physical System Based on Petrinet: A Case Study of Nuclear Power Plant. Ann. Nucl. Energy 2021, 159, 108306. [Google Scholar] [CrossRef]
- Li, W.; Yu, Y.L.; Sheng, D.R.; Chen, J.H. The Fault Diagnosis of Thermal Parameter Sensor Based on Dynamic Data Mining. J. Vib. Meas. Diagn. 2016, 36, 694–699, 809–810. [Google Scholar]
- Xing, L.W.; Yao, W.K.; Huang, Y. Fault Diagnosis of Multi-Sensor Signal with Unknown Composite Fault Based on Deep Learning. J. Chongqing Univ. 2020, 43, 93–100. [Google Scholar]
- Yu, Y.L.; Li, W.; Sheng, D.R.; Chen, J.H. A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network. J. Zhejiang Univ. Sci. A 2016, 17, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.L.; Li, W.; Sheng, D.R.; Chen, J.H. A Novel Sensor Fault Diagnosis Method Based on Modified Ensemble Empirical Mode Decomposition and Probabilistic Neural Network. Measurement 2015, 68, 328–336. [Google Scholar] [CrossRef]
- Yu, Y.; Peng, M.J.; Wang, H.; Ma, Z.G.; Li, W. Improved PCA Model for Multiple Fault Detection, Isolation and Reconstruction of Sensors in Nuclear Power Plant. Ann. Nucl. Energy 2020, 148, 107662. [Google Scholar] [CrossRef]
- Baraldi, P.; Maio, F.D.; Turati, P.; Zio, E. Robust Signal Reconstruction for Condition Monitoring of Industrial Components via A Modified Auto Associative Kernel Regression Method. Mech. Syst. Signal. Process. 2015, 60–61, 29–44. [Google Scholar] [CrossRef]
- Sun, M.Y. Blast Furnace Fault Diagnosis Method Based on Improved ICA. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2017. [Google Scholar]
- Wan, X.C.; Tong, C.D.; Shi, X.H. Decentralized Non-Gaussian Process Monitoring Scheme Based on Multi-block Modified ICA Algorithm. Inf. Control 2020, 49, 464–471. [Google Scholar]
- Peng, C.; Liu, B.; Zhou, Q. Mechanical Fault Detection Based on Machine Vision and Blind Source Separation. J. Shanghai Jiaotong Univ. 2020, 54, 953–960. [Google Scholar]
- Sun, J.L.; Zhang, W.T.; Luo, S.T. Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence. J. Electron. Inf. Technol. 2020, 42, 2471–2477. [Google Scholar]
- Dang, J.; Luo, Y.; Tian, L.L.; Tian, Q.; Wang, W.B.; Jia, R. Fault Diagnosis of Wind Turbine Gearbox Based on Optimized VMD Fusion Information Entropy and FA-PNN. Acta Energ. Sol. Sin. 2021, 42, 198–204. [Google Scholar]
- Wang, J.C.; Zhang, Y.L.; Cen, G. Fault Diagnosis Method of Hydraulic Condition Monitoring System Based on Information Entropy. Comput. Eng. Des. 2021, 42, 2257–2264. [Google Scholar]
- Zhou, Y.J.; Liu, S.J.; Zhang, Y.L.; Tian, B.Q. Method for predicting depth-averaged current velocities of underwater gliders based on data feature analysis. AIP Adv. 2021, 11, 075203. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, K.Y.; Chen, J.H.; Bao, X.D.; Cai, C.; Hu, Y.H.; Sheng, D.R. Output Optimization of Nuclear Power Steam Turbine Based on Nonlinear Autoregressive Neural Network and Random Forest Algorithm. Proc. CSEE 2021, 41, 409–416. [Google Scholar]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-Validation Pitfalls When Selecting and Assessing Regression and Classification Models. J. Cheminformatics 2014, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Y. Cross-Validation for Selecting a Model Selection Procedure. J. Econom. 2015, 187, 95–112. [Google Scholar] [CrossRef]
- Jung, Y. Multiple Predicting K-Fold Cross-Validation for Model Selection. J. Nonparametric Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
- Zhao, M.H.; Zhong, S.S.; Fu, X.Y.; Tang, B.P.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Shao, H.D.; Xia, M.; Han, G.J.; Zhang, Y.; Wan, J.F. Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working Conditions with Modified Transfer Convolutional Neural Network and Thermal Images. IEEE Trans. Ind. Inform. 2021, 17, 3488–3496. [Google Scholar] [CrossRef]
Oob Error | ||
---|---|---|
7 | 2 | 17.69% |
7 | 3 | 8.84% |
7 | 4 | 3.21% |
7 | 5 | 5.44% |
5 | 4 | 9.17% |
6 | 4 | 7.81% |
8 | 4 | 6.93% |
9 | 4 | 8.22% |
Accuracy | Time (s) | |
---|---|---|
50 | 88.58% | 38 |
100 | 97.04% | 44 |
150 | 97.11% | 89 |
200 | 94.77% | 118 |
250 | 90.19% | 142 |
300 | 85.16% | 191 |
Experiments | Training Accuracy | Training Time (s) | |
---|---|---|---|
Exp. 1 | ICA-RF | 98.5% | 70.606 |
Exp. 2 | ICA-KNN | 88.1% | 36.199 |
Exp. 3 | RF | 77.2% | 80.135 |
Exp. 4 | KNN | 68.4% | 48.625 |
Predict | ||||
---|---|---|---|---|
1 | 0 | Total | ||
Actual | 1 | True Positive (TP) | False Negative (FN) | Actual Positive (TP+FN) |
0 | False Positive (FP) | True Negative (TN) | Actual Negative (FP+TN) | |
Total | Predicted Positive (TP+FP) | Predicted Negative (FN+TN) | (TP+FN+FP+TN) |
Model | Test Accuracy | Test Time (s) |
---|---|---|
Improved ICA-RF | 99.60% | 44 |
Improved ICA-KNN | 89.78% | 29 |
RF | 85.04% | 59 |
KNN | 67.14% | 30 |
ICA-RF (Without Improved) | 94.86% | 302 |
SVM | 97.50% | 542 |
EMD-RF | 92.87% | 57 |
CNN (Epoch 1) | 47.83% | 22 |
CNN (Epoch 5) | 98.33% | 98 |
CNN (Epoch 10) | 91.16% | 173 |
CNN (Epoch 15) | 99.98% | 298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, K.; Li, W.; Chen, J.; Yu, Z. Peak-Load-Regulation Nuclear Power Unit Fault Diagnosis Using Thermal Sensors Combined with Improved ICA-RF Algorithm. Sensors 2021, 21, 6955. https://doi.org/10.3390/s21216955
Wu Y, Wu K, Li W, Chen J, Yu Z. Peak-Load-Regulation Nuclear Power Unit Fault Diagnosis Using Thermal Sensors Combined with Improved ICA-RF Algorithm. Sensors. 2021; 21(21):6955. https://doi.org/10.3390/s21216955
Chicago/Turabian StyleWu, Yifan, Kaiyu Wu, Wei Li, Jianhong Chen, and Zitao Yu. 2021. "Peak-Load-Regulation Nuclear Power Unit Fault Diagnosis Using Thermal Sensors Combined with Improved ICA-RF Algorithm" Sensors 21, no. 21: 6955. https://doi.org/10.3390/s21216955
APA StyleWu, Y., Wu, K., Li, W., Chen, J., & Yu, Z. (2021). Peak-Load-Regulation Nuclear Power Unit Fault Diagnosis Using Thermal Sensors Combined with Improved ICA-RF Algorithm. Sensors, 21(21), 6955. https://doi.org/10.3390/s21216955