# Security-Related Hardware Cost Optimization for CAN FD-Based Automotive Cyber-Physical Systems

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Background and Motivations

#### 1.2. Contributions

## 2. Related Work

## 3. System Models and Key Assumptions

#### 3.1. System Model

#### 3.2. Task Model

#### 3.3. Message Model

## 4. Hardware Cost Minimization Algorithms

#### 4.1. Stepwise Decreasing Based Heuristic Algorithm

Algorithm 1: Stepwise Decreasing-Based Heuristic Algorithm. |

Input:Z, ENOutput:EN1: HN = EN, HN′ = EN; 2: flag = TRUE; 3: while (HN′ ≥ 1) ∧ (flag = true do;4: Result = Task_Allocation (Z, EN, HN′); 5: PR _{avg} = E2EWCRT_Analysis(Result);6: T _{ini} = 3 ∗ EN, T_{ter} = 0.5, step_num = 5 ∗ TN ∗ MN, θ = 0.98;7: T = T _{ini};8: while T = > T_{ter} do9: for i = 1 to step_num do10: Result′ = Heuristic_Task_Move (Result); 11: PR _{avg}′ = E2EWCRT_Analysis (Result);12: if (PR_{avg}′ < PR_{avg}) ∨ (exp((PR_{avg} − PR_{avg}′)/T > Rand (0, 1)) then13: PR _{avg} = PR_{avg}′;14: Result = Result′ 15: end if16: if (PR < PD) then17: flag = TRUE; 18: HN = HN′ 19: HN′ = HN′ − 1 20: break; 21: else22: flag = FALSE; 23: end if24: end for25: T = T ∗ θ; 26: end while27: end while |

#### 4.2. Interference Balancing Based Heuristic Algorithm

**Definition**

**1.**

Algorithm 2: Interference Balancing-Based Heuristic Algorithm. |

Input:Z, ENOutput:HN1: HN = EN, flag = TRUE; 2: Task_Sort (Z); 3: while (HN ≥ 1) ∧ (flag = TRUE) do4: Interval = Min_Period (Z; 5: for i = 1 to TN do6: Variance = W (1, TN); 7: if Q_{i} == 1 then8: for k = 1 to HN do9: Result = Task_Allocation (T _{i}, E_{k});10: if T_{i} is scheduleable then11: Variance (1, k) = Variance_Analysis (Interval); 12: end if13: end for14: else15: for k = 1 to EN do16: Result = Task_Allocation (T _{i}, E_{k});17: if T_{i} is schedulable then18: Variance (1, k) = Variance_Analysis (Interval); 19: end if20: end for21: end if22: (Min_Variance, k) = min (Variance); 23: if Min_Variance < W then24: flag = TRUE; 25: Allocate T _{i} to the E_{k};26: Interval = P _{i};27: else28: flag = false; 29: break; 30: end if31: end for32: if system is schedulable then33: HN = HN-1; 34: else35: break; 36: end if37: end while |

## 5. Experiment Results

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al. Experimental Security Analysis of a Modern Automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010; pp. 447–462. [Google Scholar]
- Hartwich, F. CAN with Flexible Data-Rate. In Proceedings of the International CAN Conference, Hombach Castle, Germany, 10–11 October 2012; p. 14. [Google Scholar]
- With “Recall” Fiat Chrysler Makes Its Car Hack Worse. Available online: www.networkworld.com/article/2953836/security/with-recall-fiat-chrysler-makes-its-car-hack-worse (accessed on 30 November 2016).
- Xie, Y.; Liu, L.J.; Li, R.F.; Hu, J.Q.; Han, Y.; Peng, X. Security-aware signal packing algorithm for CAN-based automotive cyber-physical systems. IEEE/CAA J. Autom. Sin.
**2015**, 2, 248–257. [Google Scholar] - Xie, Y.; Zeng, G.; Kurachi, R.; Takada, H.; Xie, G.Q. Security/Timing-aware design space exploration of CAN FD for automotive cyber-physical systems. IEEE Trans. Ind. Inform.
**2019**, 15, 1094–1104. [Google Scholar] [CrossRef] - AUTOSAR Specification of Module Secure Onboard Communication, Version 4.4.0. Available online: https://www.autosar.org/fileadmin/Releases_TEMP/Classic_Platform_4.4.0/Communication.zip (accessed on 20 November 2020).
- Munir, A.; Koushanfar, F. Design and analysis of secure and dependable automotive CPS: A steer-by-wire case study. IEEE Trans. Depend. Secur. Comput.
**2018**, 17, 813–827. [Google Scholar] [CrossRef][Green Version] - Xie, G.Q.; Li, R.F.; Hu, S.Y. Security-aware obfuscated priority assignment for CAN FD messages in real-time parallel automotive applications. IEEE Trans. CAD Integr. Circuits Syst.
**2020**, 39, 4413–4425. [Google Scholar] [CrossRef] - Xie, Y.; Zhou, Y.; Xu, J.; Zhou, J.; Chen, X.; Xiao, F. Cybersecurity protection on in-vehicle networks for distributed automotive cyber-physical systems: State of the art and future challenges. Softw. Pract. Exp.
**2021**, 51, 2108–2127. [Google Scholar] [CrossRef] - Stumpf, F.; Pohl, C.; Hoettges, D.; Klein, T. Introducing HSM-Based Secure On-Board Communication in Vehicles-Challenges and Lessons Learned. In Proceedings of the Escar Europe, Stuttgart, Germany, 19–20 November 2019; pp. 1–4. [Google Scholar]
- Wu, Z.; Zhao, J.; Zhu, Y.; Li, Q. Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm; SAE Technical Paper, No. 2017-01-2005; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Chip Price. Available online: https://www.arrow.com (accessed on 23 May 2020).
- Shimizu, N. Fujitsu Develops Platforms for Toyota’s, Honda’s Cryptographic Technologies. 2018. Available online: http://tech.nikkeibp.co.jp/atcl/nxt/column/18/00213/00003/ (accessed on 12 July 2019).
- Xie, G.; Chen, Y.; Liu, Y.; Wei, Y.; Li, R.; Li, K. Resource consumption cost minimization of reliable parallel applications on heterogeneous embedded systems. IEEE Trans. Ind. Inform.
**2017**, 13, 1629–1640. [Google Scholar] [CrossRef] - Gan, J.; Pop, P.; Madsen, J. Tradeoff Analysis for Dependable Real-Time Embedded Systems during the Early Design Phases. Ph.D. Thesis, Technical University of Denmark, Department of Informatics and Mathematical Modeling, Lyngby, Denmark, 2014. [Google Scholar]
- Tamas-Selicean, D.; Pop, P. Design optimization of mixed-criticality real-time embedded systems. ACM Trans. Embed. Comput. Syst.
**2015**, 14, 50. [Google Scholar] [CrossRef] - Xie, G.; Wu, W.; Zeng, G.; Li, R.; Hu, S. Risk Assessment and Development Cost Optimization in Software Defined Vehicles. IEEE Trans. Intell. Transp. Syst.
**2021**, 22, 3675–3686. [Google Scholar] [CrossRef] - Xie, G.; Chen, Y.; Li, R.; Li, K. Hardware cost design optimization for functional safety-critical parallel applications on heterogeneous distributed embedded systems. IEEE Trans. Ind. Inform.
**2018**, 14, 2418–2431. [Google Scholar] [CrossRef] - Zou, W.; Li, R.; Wu, W.; Zeng, L. Hardware Cost and Energy Consumption Optimization for Safety-Critical Applications on Heterogeneous Distributed Embedded Systems. In Proceedings of the 24th IEEE International Conference on Parallel and Distributed Systems, Singapore, 11–13 December 2018; pp. 527–536. [Google Scholar]
- Xie, G.; Ma, W.; Peng, H.; Li, R.; Li, K. Price performance-driven hardware cost optimization under functional safety requirement in large-scale heterogeneous distributed embedded systems. IEEE Trans. Ind. Electron.
**2021**, 68, 4485–4497. [Google Scholar] [CrossRef] - Salimi, M.; Majd, A.; Loni, M.; Seceleanu, T.; Seceleanu, C.; Sirjani, M.; Daneshtalab, M.; Troubitsyna, E. Multi-Objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments. In Proceedings of the 6th Conference on the Engineering of Computer Based Systems, Bucharest, Romania, 2–3 September 2019; pp. 1–9. [Google Scholar]
- Niknam, S.; Wang, P.; Stefanov, T.P. Resource optimization for real-time streaming applications using task replication. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
**2018**, 37, 2755–2767. [Google Scholar] [CrossRef] - Cho, H.; Kim, C.; Sun, J.; Easwaran, A.; Park, J.-D.; Choi, B.-C. Scheduling parallel real-time tasks on the minimum number of processors. IEEE Trans. Parallel Distrib. Syst.
**2020**, 31, 171–186. [Google Scholar] [CrossRef] - Gu, Z.; Han, G.; Zeng, H.; Zhao, Q. Security-aware mapping and scheduling with hardware co-processors for FlexRay-based distributed embedded systems. IEEE Trans. Parallel Distrib. Syst.
**2016**, 27, 3044–3057. [Google Scholar] [CrossRef] - Saidi, S.; Steinhorst, S.; Hamann, A.; Ziegenbein, D.; Wolf, M. Future Automotive Systems Design: Research Challenges and Opportunities. In Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis, Torino, Italy, 30 September–5 October 2018; pp. 1–7. [Google Scholar]
- Corbett, C.; Brunner, M.; Schmidt, K.; Schneider, R.; Bannebaum, U. Leveraging Hardware Security to Secure Connected Vehicles; SAE Technical Paper, 2018-01-0012; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Wyglinski, A.M.; Huang, X.; Padir, T.; Lai, L.; Eisenbarth, T.R.; Venkatasubramanian, K. Security of autonomous systems employing embedded computing and sensors. IEEE Micro
**2013**, 33, 80–86. [Google Scholar] [CrossRef] - Nilsson, D.K.; Phung, P.H.; Larson, U.E. Vehicle ECU Classification Based on Safety-Security Characteristics. In Proceedings of the IET Road Transport Information and Control Conference, Manchester, UK, 20–22 May 2008; pp. 1–7. [Google Scholar]
- Joshi, P.; Zeng, H.B.; Bordoloi, U.D.; Samii, S.; Ravi, S.S.; Shukla, S.K. The Multi-Domain Frame Packing Problem for CAN-FD. In Proceedings of the Euromicro Conference on Real-Time Systems, Dubrovnik, Croatia, 27–30 June 2017; pp. 12:1–12:22. [Google Scholar]
- Xie, Y.; Zeng, G.; Kurachi, R.; Peng, X.; Xie, G.Q.; Hiroaki, T. Balancing bandwidth utilization and interrupts: Two heuristic algorithms for the optimized design of automotive CPS. IEEE Trans. Ind. Inform.
**2020**, 16, 2382–2392. [Google Scholar] [CrossRef] - Xie, Y.; Zeng, G.; Kurachi, R.; Peng, X.; Xie, G.Q.; Hiroaki, T. Optimizing Extensibility of CAN FD for Automotive Cyber-Physical Systems. IEEE Trans. Intell. Transp. Syst.
**2021**. [Google Scholar] [CrossRef] - Natale, M.D.; Meschi, A. Scheduling messages with earliest deadline techniques. J.-Real-Time Syst.
**2001**, 20, 255–285. [Google Scholar] [CrossRef] - Davis, R.I.; Burns, A.; Bril, R.J.; Lukkien, J.J. Controller Area Network(CAN) schedulability analysis: Refuted, revisited and revised. J. -Real-Time Syst.
**2007**, 35, 239–272. [Google Scholar] [CrossRef][Green Version] - Davare, A.; Zhu, Q.; Natale, M.D.; Pinello, C.; Kanajan, S.; Sangiovanni-Vincentelli, A.L. Period Optimization for Hard Real-time Distributed Automotive Systems. In Proceedings of the 44th Design Automation Conference, San Diego, CA, USA, 4–8 June 2007; pp. 278–283. [Google Scholar]
- AUTOSAR Specification of Crypto Service Manager, Version 4.4.0. Available online: https://www.autosar.org/fileadmin/Releases_TEMP/Classic_Platform_4.4.0/Crypto.zip (accessed on 20 November 2020).
- McLean, S.D.; Craciunas, S.S.; Hansen, E.A.J.; Pop, P. Mapping and Scheduling Automotive Applications on ADAS Platforms Using Metaheuristics. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, Vienna, Austria, 8–11 September 2020; pp. 329–336. [Google Scholar]
- Task Graph Generator. Available online: https://sourceforge.net/projects/taskgraphgen/ (accessed on 1 August 2021).
- Kramer, S.; Ziegenbein, D.; Hamann, A. Real World Automotive Bench-Mark for Free. In Proceedings of the 6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS), Lund, Sweden, 7 July 2015. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xie, Y.; Guo, Y.; Yang, S.; Zhou, J.; Chen, X. Security-Related Hardware Cost Optimization for CAN FD-Based Automotive Cyber-Physical Systems. *Sensors* **2021**, *21*, 6807.
https://doi.org/10.3390/s21206807

**AMA Style**

Xie Y, Guo Y, Yang S, Zhou J, Chen X. Security-Related Hardware Cost Optimization for CAN FD-Based Automotive Cyber-Physical Systems. *Sensors*. 2021; 21(20):6807.
https://doi.org/10.3390/s21206807

**Chicago/Turabian Style**

Xie, Yong, Yili Guo, Sheng Yang, Jian Zhou, and Xiaobai Chen. 2021. "Security-Related Hardware Cost Optimization for CAN FD-Based Automotive Cyber-Physical Systems" *Sensors* 21, no. 20: 6807.
https://doi.org/10.3390/s21206807