RRH Clustering Using Affinity Propagation Algorithm with Adaptive Thresholding and Greedy Merging in Cloud Radio Access Network
Abstract
1. Introduction
Contribution and Organization
2. System Model
3. RRH Clustering with AP Algorithm Schemes
Algorithm 1 AP clustering algorithm |
|
3.1. Proposed Clustering Algorithm 1
Algorithm 2 Proposed clustering Algorithm 1 |
|
3.2. Proposed Clustering Algorithm 2
Algorithm 3 Proposed clustering Algorithm 2 |
|
3.3. Maximum Performance with AP Algorithm
Algorithm 4 Maximum performance with AP algorithm |
|
4. Simulation Results
- AP w/ max K: AP clustering algorithm with max K exhibits the best performance for Algorithm 1 and is shown in Algorithm 4;
- Proposed AP 2: AP clustering algorithm with ghd Otsu threshold and the greedy merging algorithm (Algorithm 3);
- Proposed AP 1: AP clustering algorithm with Otsu threshold (Algorithm 2);
- Conventional AP 1 [26]: Conventional AP clustering Algorithm 1;
- Conventional AP 2 [25]: Conventional AP clustering Algorithm 2;
- Static CoMP: Static CoMP scheme assumes coordination of four adjacent cells .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMT Vision. Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond; International Telecommunication Union (ITU), Document, Radiocommunication Study Groups: Geneva, Switzerland, 2015. [Google Scholar]
- Han, Y.; Elayoubi, S.E.; Galindo-Serrano, A.; Varma, V.S.; Messai, M. Periodic Radio Resource Allocation to Meet Latency and Reliability Requirements in 5G Networks. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–6. [Google Scholar]
- Murakami, T.; Kishi, Y.; Ishibashi, K.; Kasai, K.; Shinbo, H.; Tamai, M.; Tsuda, K.; Nakazawa, M.; Tsukamoto, Y.; Yokoyama, H.; et al. Research project to realize various high-reliability communications in advanced 5G network. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–8. [Google Scholar]
- Wu, J.; Zhang, Z.; Hong, Y.; Wen, Y. Cloud radio access network (C-RAN): A primer. IEEE Netw. 2015, 29, 35–41. [Google Scholar] [CrossRef]
- Nigam, G.; Minero, P.; Haenggi, M. Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans. Commun. 2014, 62, 4134–4146. [Google Scholar] [CrossRef]
- Tanbourgi, R.; Singh, S.; Andrews, J.G.; Jondral, F.K. Analysis of non-coherent joint-transmission cooperation in heterogeneous cellular networks. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 5160–5165. [Google Scholar]
- Peng, M.; Li, Y.; Jiang, J.; Li, J.; Wang, C. Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wirel. Commun. 2014, 21, 126–135. [Google Scholar] [CrossRef]
- Yu, X.; Cui, Q.; Haenggi, M. Coherent joint transmission in downlink heterogeneous cellular networks. IEEE Wirel. Commun. Lett. 2017, 7, 274–277. [Google Scholar] [CrossRef]
- Tanbourgi, R.; Singh, S.; Andrews, J.G.; Jondral, F.K. A tractable model for noncoherent joint-transmission base station cooperation. IEEE Trans. Wirel. Commun. 2014, 13, 4959–4973. [Google Scholar] [CrossRef]
- Zhang, H.; Safaei, F.; Tran, L.C. Joint Transmission Power Control and Relay Cooperation for WBAN Systems. Sensors 2018, 18, 4283. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-free massive MIMO versus small cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C. Cell-free massive MIMO: User-centric approach. IEEE Wirel. Commun. Lett. 2017, 6, 706–709. [Google Scholar] [CrossRef]
- Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Yang, H. Cell-free massive MIMO systems. In Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 8–11 November 2015; pp. 695–699. [Google Scholar]
- Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 2007, 30, 2826–2841. [Google Scholar] [CrossRef]
- Wohwe Sambo, D.; Yenke, B.O.; Förster, A.; Dayang, P. Optimized clustering algorithms for large wireless sensor networks: A review. Sensors 2019, 19, 322. [Google Scholar] [CrossRef]
- Song, L.; Song, Q.; Ye, J.; Chen, Y. A Hierarchical Topology Control Algorithm for WSN, Considering Node Residual Energy and Lightening Cluster Head Burden Based on Affinity Propagation. Sensors 2019, 19, 2925. [Google Scholar] [CrossRef] [PubMed]
- Ronan, T.; Qi, Z.; Naegle, K.M. Avoiding common pitfalls when clustering biological data. Sci. Signal. 2016, 9, re6. [Google Scholar] [CrossRef] [PubMed]
- Leber, B.; Maier, B.; Fuchs, F.; Chi, J.; Riffel, P.; Anderhub, S.; Wagner, L.; Ho, A.D.; Salisbury, J.L.; Boutros, M.; et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med. 2010, 2, 33ra38. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Ganesh, S. Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. J. Cell Sci. 2020, 133, jcs245589. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef]
- Dueck, D. Affinity Propagation: Clustering Data by Passing Messages; University of Toronto: Toronto, ON, Canada, 2009. [Google Scholar]
- Wang, J.; Gao, Y.; Wang, K.; Sangaiah, A.K.; Lim, S.J. An affinity propagation-based self-adaptive clustering method for wireless sensor networks. Sensors 2019, 19, 2579. [Google Scholar] [CrossRef]
- Subedi, S.; Pyun, J.Y. Lightweight workload fingerprinting localization using affinity propagation clustering and Gaussian process regression. Sensors 2018, 18, 4267. [Google Scholar] [CrossRef]
- Morosi, S.; Mucchi, L.; Marabissi, D.; Dolfi, M.; Marini, K. On the trade-off between Secrecy and Energy-Efficiency in Multi-Layer Cellular Networks. In Proceedings of the 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September 2019; pp. 132–137. [Google Scholar]
- Wesemann, S.; Fettweis, G. Decentralized formation of uplink CoMP clusters based on affinity propagation. In Proceedings of the 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, France, 28–31 August 2012; pp. 850–854. [Google Scholar]
- Zhang, H.; Liu, H.; Jiang, C.; Chu, X.; Nallanathan, A.; Wen, X. A practical semidynamic clustering scheme using affinity propagation in cooperative picocells. IEEE Trans. Veh. Technol. 2014, 64, 4372–4377. [Google Scholar] [CrossRef]
- Park, S.; Jo, H.S.; Mun, C.; Yook, J.G. Radio Remote Head Clustering with Affinity Propagation Algorithm in C-RAN. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–2. [Google Scholar]
- Rahman, M.M.U.; Ghauch, H.; Imtiaz, S.; Gross, J. RRH clustering and transmit precoding for interference-limited 5G CRAN downlink. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [Google Scholar]
- Moiane, A.F.; Machado, Á.M.L. Evaluation of the clustering performance of affinity propagation algorithm considering the influence of preference parameter and damping factor. Bol. Ciências Geodésicas 2018, 24, 426–441. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- 3GPP. Study on Channel Model for Frequency Spectrum Above 6 GHz; Technical Report (TR) 38.900, 3rd Generation Partnership Project (3GPP), Version 14.2.0.; 3GPP: Sophia Antipolis, France, 2017. [Google Scholar]
- Jo, H.S.; Sang, Y.J.; Xia, P.; Andrews, J.G. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 2012, 11, 3484–3495. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Center frequency (GHz) | 28 |
Bandwidth (MHz) | 20 |
Number of RRHs and UEs | 36 |
MS receive antenna | 1 |
RRH transmit antenna | 1 |
(dBm) | 25.4 |
(dBm) | 10,13,16,19,22,25,28,31 |
RRH inter-site distance (m) | 50 |
Height of RRH (m) | 5 |
Height of MS (m) | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Jo, H.-S.; Mun, C.; Yook, J.-G. RRH Clustering Using Affinity Propagation Algorithm with Adaptive Thresholding and Greedy Merging in Cloud Radio Access Network. Sensors 2021, 21, 480. https://doi.org/10.3390/s21020480
Park S, Jo H-S, Mun C, Yook J-G. RRH Clustering Using Affinity Propagation Algorithm with Adaptive Thresholding and Greedy Merging in Cloud Radio Access Network. Sensors. 2021; 21(2):480. https://doi.org/10.3390/s21020480
Chicago/Turabian StylePark, Seju, Han-Shin Jo, Cheol Mun, and Jong-Gwan Yook. 2021. "RRH Clustering Using Affinity Propagation Algorithm with Adaptive Thresholding and Greedy Merging in Cloud Radio Access Network" Sensors 21, no. 2: 480. https://doi.org/10.3390/s21020480
APA StylePark, S., Jo, H.-S., Mun, C., & Yook, J.-G. (2021). RRH Clustering Using Affinity Propagation Algorithm with Adaptive Thresholding and Greedy Merging in Cloud Radio Access Network. Sensors, 21(2), 480. https://doi.org/10.3390/s21020480