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Abstract: Affinity propagation (AP) clustering with low complexity and high performance is suitable
for radio remote head (RRH) clustering for real-time joint transmission in the cloud radio access
network. The existing AP algorithms for joint transmission have the limitation of high computational
complexities owing to re-sweeping preferences (diagonal components of the similarity matrix) to
determine the optimal number of clusters as system parameters such as network topology. To
overcome this limitation, we propose a new approach in which preferences are fixed, where the
threshold changes in response to the variations in system parameters. In AP clustering, each diagonal
value of a final converged matrix is mapped to the position (x,y coordinates) of a corresponding
RRH to form two-dimensional image. Furthermore, an environment-adaptive threshold value is
determined by adopting Otsu’s method, which uses the gray-scale histogram of the image to make
a statistical decision. Additionally, a simple greedy merging algorithm is proposed to resolve the
problem of inter-cluster interference owing to the adjacent RRHs selected as exemplars (cluster
centers). For a realistic performance assessment, both grid and uniform network topologies are
considered, including exterior interference and various transmitting power levels of an RRH. It is
demonstrated that with similar normalized execution times, the proposed algorithm provides better
spectral and energy efficiencies than those of the existing algorithms.

Keywords: machine learning; clustering; affinity propagation; C-RAN; exterior interference

1. Introduction

The 5th generation mobile communication system (5G system) has three types of
requirements: Enhanced mobile broadband, massive machine-type communications, and
ultra-reliable and low-latency communications (URLLC) [1]. Among these requirements,
reliability is an important factor that directly affects the quality of the 5G system service.
Therefore, many studies have focused on this aspect of 5G systems [2,3]. The cloud radio
access network (C-RAN) has a centralized processor baseband unit (BBU) and a distributed
radio remote head (RRH) to provide a better network structure for URLLC [4]. In the
C-RAN of the 5G system, the joint transmission technique between RRHs is an essential
technique that can increase reliability by eliminating the overhead caused by the inter-cell
interference and hand-off [5–7]. There are two types of joint transmission: Non-coherent
joint transmission and coherent joint transmission [8–10]. As a representative wireless
communication technology that uses coherent joint transmission, the cell-free massive
multiple-input and multiple-output (MIMO) is capable of simultaneously transmitting high
data rates to multiple devices without any interference [11–13]. In this study, we assume
coherent joint transmission. Although joint transmission exhibits strong performance, the
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number of RRHs that can be combined on a network is limited. Therefore, it is necessary to
appropriately configure a cluster between RRHs based on the channel environment using an
appropriate clustering algorithm. Even in traditional wireless sensor networks, clustering
algorithms are important for configuring user-oriented multiple sensors. Therefore, many
clustering algorithms have already been proposed [14–16].

Traditionally, clustering is a method of discovering the regularity present in a large
quantity of unstructured information and appropriately grouping this information based
on user-defined rules. Depending on how the information is grouped, the interpretation
and results can be completely different. Therefore, the user intending to use clustering
must adopt an appropriate clustering method to group the desired information. This paper
aims to address the clustering problem, which is a non-deterministic polynomial hard
problem, using a clustering algorithm with low time complexity and excellent performance.
Clustering algorithms are often used in medicine, chemistry, and biotechnology to cat-
egorize information [17–19]. Among the clustering algorithms, the well-known affinity
propagation (AP) clustering algorithm is a representative clustering method based on
graph theory [20–23]. Graph theory-based clustering is characterized by information ex-
change among data points. This method has a lower time complexity than that of other
clustering methods [20]. The AP clustering algorithm is extremely efficient in terms of
energy consumption [24]. Furthermore, low time complexity is a key requirement that
enables dynamic clustering to be implemented in a wireless communication system where
the channel state between a RRH and user equipment (UE) changes in real time.

The AP clustering algorithm is a machine learning-based clustering technique that
obtains a reasonable cluster combination and number of clusters through iteration. That is,
the number of clusters does not need to be determined before the algorithm is executed.
First, a similarity matrix is designed based on the characteristics of the data points, and
each component of this matrix is updated and converged through iteration. Finally, the
converged matrix is used for clustering [20]. As the similarity matrix is the only input
value, the design of the matrix and setting the initial values almost dominate the clustering
performance. The similarity matrix is divided into diagonal and off-diagonal components.
Diagonal components are called preferences and are terms that pertain mainly to the
number of clusters K. Off-diagonal components are values that pertain mainly to the
combinations of data points that constitute the cluster. Although it is not an input value of
this algorithm, there is one more parameter to effectively control the number of clusters,
which is a threshold set to the default value of zero. Among the diagonal components of
the final matrix after the iteration is completed, the components that exceed this threshold
are called exemplars. The number of exemplars is equal to the number of clusters.

Recently, studies on AP clustering algorithms have focused on improving the joint
transmission performance among RRHs in wireless communication networks. In these
studies, the similarity matrix is designed on the basis of the expected or instant value of
the channel gain between transmitting and receiving nodes, because the channel gain is a
representative index that measures the similarity between wireless communication nodes
(data points) [25–27]. Wesemann el al. [25] verified that the application of a similarity metric,
defined as the sum of mutual inter-cell interference, can outperform static clustering in
uplink joint transmission. Zhang et al. [26] proposed BS clustering using a similarity matrix
consisting of the signal-to-interference and noise ratio (SINR) gain of joint transmission
over non-joint transmission in a downlink pico-cellular network. Both the offline and online
phases of AP clustering are also provided for practical implementation. This approach
to clustering achieved better performance than that of the existing clustering algorithms.
In a typical small-cell C-RAN, the RRHs are not sufficiently separated out of the reach of
radio waves, causing exterior interference [28], which refers to interference emitted from
RRHs connected to the adjacent BBUs using the same frequency and resource elements.
With this background, Park et al. [27] proposed a new preference for controlling the
number of clusters considering not only inter-cluster and intra-cluster interferences but
also exterior interference.
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Contribution and Organization

As all AP clustering methods proposed in previous studies [25–27] use a threshold
fixed to zero, the change in the number of clusters is significant in response to a change
in the preference value. Therefore, the clustering performance also varies significantly.
Studies have suggested that the number of clusters increases as the value of the preference
increases [21]. However, there is no formula that specifically defines the relationship
between the two values. Therefore, the preference value must be swept to achieve optimal
clustering performance. However, this approach inevitably entails an extremely high
computational complexity, as shown in [29].

To overcome this problem, we propose a new approach in which the preference value
is fixed and the conventional fixed zero threshold is replaced with a value that changes
adaptively in response to various system parameters. To determine the adaptive threshold,
the diagonal components of the converged responsibility matrix R + availability matrix A
(R + A matrix) that has finished iteration in the similarity matrix (see Section 3 Algorithm 1
for detail) are imaged in three dimensions as the RRH position. The Otsu method, which
determines the threshold that divides the background and foreground based on statistical
decision theory using a gray-scale histogram, is applied to the imaged information. The
proposed AP clustering technique using the Otsu threshold works effectively in situations
where many exemplars are determined based on a fixed preference and adjusts the number
of exemplars reasonably [30]. Since an exemplar represents the center of a cluster, the
adjacent exemplars indicate that the interference among clusters (inter-cluster interference)
can be enlarged. The existing AP clustering method does not have the ability to correct
the exemplars adjacent phenomenon. The greedy merging algorithm can increase the
performance of the AP clustering system by combining the exemplars into one when they
are adjacent to one another and solve this problem. We verified that the proposed AP
clustering algorithms have better performances than those of the existing AP clustering
algorithms using the Otsu threshold and greedy merging methods, which are simpler than
the existing preference sweeping AP clustering algorithms. In Section 3, the process flow
of the AP clustering algorithm is discussed in detail.

In this study, the conventional and proposed AP clustering algorithms are compared
using a system-level simulation in a small-cell C-RAN with various realistic models and
parameters. The simulation considers not only inter-cluster and intra-cluster interferences
but also exterior interference, and a channel model using stochastic path loss and shadow-
ing for mmWave of IEEE TR 38.900 and flat fading [31], as well as various levels of RRH
transmitting power in exterior areas. Moreover, the performance evaluation is performed
for both the grid and uniform random network topology, as depicted in Figure 1.

Figure 1. Concept of exterior interference from eight baseband units (BBU) environment with globally coordinated
zero-forcing beamforming (ZFBF) in two topologies.
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This paper is organized as follows. Section 2 describes the system model and simu-
lation settings. The conventional and proposed AP algorithms are discussed in Section 3.
Performance evaluation and simulation results are presented in Section 4, and concluding
remarks summarize the main results in Section 5.

2. System Model

In this section, the spectral efficiency (SE) for performance verification is derived,
and the environment for the system-level simulation is defined. Figure 1 depicts the total
area of the system-level simulation. This area is divided into nine sections in two network
topologies. Each of these nine sections has 36 RRHs and 36 UE connected to one BBU. The
scheduling algorithm is generally not assumed. If the scheduling algorithm is assumed, it
is possible to simulate a situation in which the number of UE is significantly larger than
that of RRHs. The clustered ZFBF area in Figure 1 is depicted in Figure 2b as the desired
clustering area. This is the area where the performance of the existing clustering algorithm
is compared with that of the algorithm proposed in this paper. This area is evaluated
using two network topologies: Grid and uniform. In the first topology, the RRHs are
installed in a grid pattern in the form of a square cell, with the distance between adjacent
RRHs being equal. In this topology, the UE are randomly located within the square cell
boundary of the central RRH. In the second topology, the RRHs and UE are randomly
located within the area. In this topology, the RRH with the highest reception power at
the UE is assumed to be the RRH serving the UE. The remaining eight areas in Figure 1
are regions for exterior interference. These areas use the same frequency and resource
blocks as does the middle area and assume global coordination ZFBF i.e., K = 1. The
following describes the evaluation of the clustering algorithm in the middle area. Figure 2a
depicts the desired signal in a conventional cellular system with inter-cell interference,
and Figure 2b depicts the desired cluster region C receiving inter-cluster interference from
C′ and exterior interference from C′′. The received signal at user i served by the desired
cluster C with ZFBF can be described as:

yi = hC
i wC

i si︸ ︷︷ ︸
Desired signal

+
N

∑
j=1,j 6=i

hC
i wC

j sj︸ ︷︷ ︸
Intra-cluster interference

+
M

∑
k=1,k 6=i

∑
l∈C′

hC′
ik

wC′
lk

slk︸ ︷︷ ︸
Inter-cluster interference

+
E

∑
o=1

∑
q∈C′′

hC′′
io wC′′

qo sqo︸ ︷︷ ︸
Exterior interference

+ni, (1)

where si is the desired signal from the desired ith RRH to the desired ith UE, and hC
i is

the channel gain received in the desired cluster C. N is the number of RRHs in desired
cluster C. sj is the signal from the N RRHs, except for the ith RRH in cluster C to the ith
UE. Assuming perfect channel state information, the intra-cluster interference converges to
zero owing to the orthogonal characteristics of the ZF precoding. As depicted in Figures 1
and 2b, hC′

ik
is the channel gain received from the M RRHs of other cluster C′ in the desired

area, and slk is the signal from the M RRHs of the other cluster C′ to the ith UE. mathb f hC′′
io

is the channel gain received from the exterior clusters C′′ in the eight exterior areas (E = 8).
ni denotes the additive white Gaussian noise with zero mean and variance σ2

i of the ith
UE. The channel coefficient h used in (1) assumes a flat fading channel. For the path-loss
and shadowing model, the urban micro-street canyon model of IEEE TR 38.900 is used [31].
si, sj, and slk occupy the same resource block. In (1), interference is categorized into three
types: Intra-cluster, inter-cluster, and exterior interferences. The intra-cluster interference is
generated inside the precoding matrix of the desired cluster C, inter-cluster interference is
generated by the weight matrices from the other clusters C′ in the desired area, and exterior
interference is applied from clusters C′′ of the eight exterior areas. w is the normalized ZF
weight vector for each channel coefficient vector, h, and is given by:

W̃ = [w̃1, w̃2, ..., w̃Q] = HH(HHH)−1 (2)

wi = w̃i/||w̃i||,
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where H is the Hermitian of the matrix, and Q is the number of UE constituting the desired
cluster. The SINR of the ith user in the downlink are given by:

SINRi =
Pi|hC

i wC
i |

2

M

∑
k=1,k 6=i

∑
l∈C′

Pi|hC′
ik

wC′
lk
|2︸ ︷︷ ︸

Inter interference

+
E

∑
o=1

∑
q∈C′′

Pe|hC′′
io wC′′

qo |
2

︸ ︷︷ ︸
Exterior interference

+σ2
i

, (3)

where the intracluster interference is eliminated by ZF precoding. σ2
i denotes the additive

white Gaussian noise with zero mean and variance σ2
i . Pe is the transmitting power of the

RRH in the eight exterior areas (E = 8), and Pi is the transmitting power of the RRHs in
the desired clustering areas C and C′. This study evaluates the SE performance by fixing
Pi and changing only the Pe of the RRHs in the exterior area C′′. The SE of the ith UE is
obtained from the SINR as follows:

SEi = log2(1 + SINRi). (4)

In this paper, we compared and evaluated the joint transmission performance of
the RRH group by applying the clustering algorithm using (4). In addition, the energy
efficiency performance was evaluated as shown in (5):

EEi =
SEi
Pi

. (5)

Figure 2. Concept of conventional cellular and joint transmission a with clustering system. (a): conventional cellular system;
(b): joint transmission with clustering system.

3. RRH Clustering with AP Algorithm Schemes

This section describes an AP clustering algorithm that determines a joint transmission
group among RRHs in a small-cell C-RAN environment. The AP clustering algorithm
is a graph theory-based clustering method that uses information exchange among data
points [20]. Parametric-based clustering has a disadvantage in that the clustering perfor-
mance variance is large because the cluster configuration can vary according to the initial
value. However, the AP clustering method always creates the same cluster when the initial
value is set, but it has the disadvantage of the time complexity being slightly higher than
the parametric-based method because of the iteration process. The AP clustering method is
particularly suitable for joint transmission systems in wireless communication networks.
The AP algorithm has an input value based on initial information among data points called
the similarity matrix S. This matrix contains information relating data point pairs, so it is a
square matrix with the size of the number of data points, and is divided into off-diagonal
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components and diagonal components called preferences. These two components play
different roles in creating a cluster. Off-diagonal components are values related to a set of
data points in a cluster. Diagonal components are values related to K. Therefore, both of
these two components have a very important effect on the cluster performance. However,
the focus of this study is on improving the clustered joint transmission performance by
appropriately adjusting K:

s(i, p) =

 log( SINRCoMP(i,p)
SINRi

non
), i 6= p

ε · [log( 1
SINRi

non
)], i = p

(6)

As shown in Algorithm 1, the similarity matrix S is the input value, and the respon-
sibility matrix R and the availability matrix A, which have the same matrix size as S, are
set to 0 matrix. Lines 3 to 7 calculate and update the R and A matrices. ψ and ζ in line 8
are oscillating factors, representing the weights for the past and present values of the R
and A matrix that are iterated by lines 9 to 13, and both values are defined as 0.5. Lines
14 to 20 determine the exemplar. Among the diagonal components of the R + A matrix
after iteration, components larger than threshold 0 are called the exemplar. The cluster
set included in the exemplars is determined by line 19. Figure 3 is a graph showing the
convergence process of the diagonal components of matrices R and A with the iteration
progresses for data points 2, 5, 16, and 26 as an example. In the case of Algorithm 1, it can
be observed that convergence is usually achieved with 10 iterations. Figure 4 shows the
convergence process of the diagonal components of the R + A matrix, and the two data
points 16 and 26 selected as the exemplar larger than threshold 0. (5) is the similarity matrix
used in the uplink joint transmission proposed in [26]. In this paper, this similarity matrix
is used for down-link joint transmission. The off-diagonal components of this similarity
matrix are defined as the value dividing the down-link SINR to the ith UE by the SINR
value when non-CoMP pair CoMP between the ith RRH and all other RRHs (p indexing).
This is the value representing the gain when performing joint transmission with the ith
RRH. Here, the meaning of SINRi

non indicates the ratio of the sum of the interference signal
power received from all RRHs except the ith RRH plus noise power and the desired signal
power received from the ith UE. The meaning of SINRCoMP(i, p) indicates the ratio of the
desired signal power received by the ith UE from the joint transmission of ith RRH and pth
RRH and the sum of the interference signal power received from all RRHs except ith RRH
and pth RRH plus noise power. Diagonal components can be obtained by multiplying the
values remaining after excluding the pair CoMP SINR from the off-diagonal components
by ε, a coordinative parameter. In (5), ε adjusts the size of the preference and this value is
determined to be 0.3. As ε decreases, the value of the diagonal components decreases and
K decreases, and as ε increases, K also increases. We implement a basic AP algorithm using
this similarity matrix in the following subsections, and propose a new clustering algorithm
by adding an image processing method and another clustering algorithm.
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Algorithm 1 AP clustering algorithm

1: (A) Initialization: Similarity matrix S according to (5)

2: Set initial availability matrix A = [0], responsibility matrix R = [0], and # of cluster

K = 0

3: Calculate R(i, :) and A(:, p)

4: r(i, p) = s(i, p)−max
p′ 6=p

(
a(i, p′) + s(i, p′)

)
5: a(i, p) = min

(
0, r(p, p) + ∑i′/∈i,p max(0, r(i′, p))

)
6: a(p, p) = ∑i′ 6=p max{0, r(i′, p)}

7: Update R(i, :) and A(:, p)

8: Oscillatory decay: (ϕ and ζ ∈ [0, 1])

9: (B) Iteration:

10: while Convergence do

11: R(iter) = ϕ · R(iter) + (1− ϕ) · R(iter−1)

12: A(iter) = ζ ·A(iter) + (1− ζ) ·A(iter− 1)

13: (C) Exemplar judgment:

14: for ind = 1 to number of RRH do

15: if r(ind, ind) + a(ind, ind) >0 then

16: K = K + 1

17: exemplar(ind) = argmaxp

(
a(ind, p) + r(ind, p)

)
18: (D) Output: exemplar, set of clusters, and K

Figure 3. Diagonal component values of R, A matrix by iteration in Algorithm 1 (2, 5, 16, and 26
data points).
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Figure 4. Diagonal component values of R + A matrix by iteration in Algorithm 1 (2, 5, 16, and 26
data points) with 0 threshold.

3.1. Proposed Clustering Algorithm 1

The proposed clustering Algorithm 1 is a method of changing the fixed threshold 0 of
the conventional AP clustering algorithm to a more suitable value for a given environment.
One of the traditional image processing methods, Otsu’s method, is used in this clustering
algorithm [30]. Otsu’s method can be selected as a method for binarization and transforms
an image with several levels of gray including white and black into an image with only
white and black. In [30], the criterion for dividing white and black is called the Otsu
threshold. In this study, as a result of the mesh on the right of Figures 5–8, the diagonal
components of the R + A matrix that determine the cluster in AP clustering are imaged
through mapping to the topology. In Algorithm 2, the diagonal components of the R + A
matrix mapping information are used to determine the Otsu threshold in the Otsu’s method.
The process of determining the Otsu threshold uses the distribution of black and white in
the gray-scale histogram, and can be explained by (6)–(9). In the example of Figures 5–8,
the diagonal components of the R + A matrix can be represented as a gray-scale histogram
as shown in Figure 7. (6) shows the foreground and background weight value of the
gray-scale histogram, and shows black as foreground( f ) and white as background(b). T
is the bin index, Tf + Tb = A, and A is the total number of bins. For both Tf and Tb, all
values from 0 to A are obtained for (6)–(9) (see Figure 7 as an example, A = 17). (7) shows
the foreground and background mean value of the gray-scale histogram, and γ shows the
middle value of the bin width (Figure 7 as an example, −0.65, −0.55, . . . , 0.95). (8) shows
the foreground and background variance value of the gray-scale histogram. (9) indicates
within class variance, and eventually finds the index T that minimizes σ2

wcv, and determines
γT with that index as the Otsu threshold.

WTf ,b =
∑

Tf ,b
α=0 βα

tr(R + A)
(7)

µTf ,b =
∑

Tf ,b
α=0(γαβα)

∑
Tf ,b
α=0 βα

(8)

σ2
Tf ,b

=
∑

Tf ,b
α=0[(γα − µTf ,b)

2βα]

∑
Tf ,b
α=0 βα

(9)

σ2
wcv = WTb σ2

Tb
+ WTf σ2

Tf
(10)
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Algorithm 2 Proposed clustering Algorithm 1

1: (C) Exemplar judgment:

2: for ind = 1 to number of RRH do

3: if r(ind, ind) + a(ind, ind) >Otsu threshold then

4: K = K + 1

5: exemplar(ind) = argmaxp

(
a(ind, p) + r(ind, p)

)
6: (D) Output: exemplar, set of clusters, and K

Figure 5. 3-D plot (left) and mesh plot (right) with the diagonal components of the R + A in Algorithm 1.

Figure 6. 3-D plot (left) and mesh plot (right) with Otsu threshold applied to the diagonal components of R + A in
Algorithm 2.

The figure on the right of Figure 5 shows the diagonal components of the R + A
matrix as a mesh plot in the desired clustering area C and C′ in Figure 1. The left figure
of Figure 5 shows the diagonal components of the R + A matrix and threshold 0 at each
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RRH position as a 3-D plot. In these two figures, the diagonal component values of the
R + A matrix having a threshold of 0 or more become exemplars, and in this case, there are
7 exemplars (K = 7). Algorithm 2 is the proposed clustering Algorithm 1 to determine the
Otsu threshold by constructing a grayscale histogram of the diagonal component values of
each RRH’s R + A matrix. The left figure of Figure 6 shows that the threshold is changed
by Otsu’s method, and the number of exemplars is eventually changed from 7 to 5. In
the figure on the right of Figure 5, exemplars 2 and 7 have lower values than the Otsu
threshold, and therefore these data points cannot be selected as exemplars in the figure on
the right of Figure 6. Algorithm 2 represents the proposed clustering Algorithm 1, lines
1 to 13 are the same as for Algorithm 1, and there is a difference in how the exemplar is
determined after that.

Figure 7. Histogram of diagonal component values of R, A matrix for Otsu threshold.

Figure 8. 3-D plot (left) and mesh plot (right) with Otsu threshold and greedy merging algorithm applied to the diagonal
components of R + A in Algorithm 3.

3.2. Proposed Clustering Algorithm 2

The second proposed clustering algorithm is a clustering technique that uses a
greedy merging algorithm in addition to the proposed clustering Algorithm 1 proposed in
Section 3.1. In this paper, a greedy merging algorithm creates one representative exemplar
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by grouping adjacent exemplars if exemplars are adjacent to each other. An exemplar serves
as the center of the cluster, and there will be greater interference when these exemplars
are adjacent to each other. Algorithm 3 shows the process flow of the proposed clustering
Algorithm 2. Lines 1 to 13 are the same as for Algorithm 1, and lines 14 to 18, the process of
applying the Otsu threshold, are the same as for Algorithm and these lines apply the Otsu
threshold. Lines 19 to 23 determine the exemplar with the largest diagonal component
of R + A as the representative exemplar when it finds an adjacent exemplar among the
exemplars that exceed the Otsu threshold. In Figure 6, 2, 3, and 4 exemplars are adjacent
among the 5 exemplars that have passed the Otsu threshold. As exemplar 3 has the highest
value, the rest are eliminated as exemplars, and exemplar 3 becomes the representative.

Algorithm 3 Proposed clustering Algorithm 2

1: (C) Exemplar judgment:

2: for ind = 1 to number of RRH do

3: if r(ind, ind) + a(ind, ind) >Otsu threshold then

4: K = K + 1

5: if A exemplar has adjacent exemplar then

6: K = K−number of adjacent exemplar

7: else Overlapped adjacent exemplar

8: K = K

9: exemplar(ind) = argmaxpa(ind, p) + r(ind, p)

10: (D) Output: exemplar, set of clusters, and K

3.3. Maximum Performance with AP Algorithm

This method selects the most suitable K from a given similarity matrix and serves as
the upper bound of the three AP-based clustering algorithms. The method of selecting the
exemplar in Algorithm 4 is to calculate (3) in all cases from when K is 1 to the number of
RRHs (=36), and the exemplar is the K having the highest SINR. This clustering method
provides the optimal performance for K. Therefore, in the Section 4, this method will
be referred to as AP w/max K, and the results of this algorithm will also be derived to
address the extent to which the proposed clustering algorithms can exhibit a performance
comparable to that of this clustering algorithm.

Algorithm 4 Maximum performance with AP algorithm

1: (C) Exemplar judgment:

2: for t = 1 to number of RRH do

3: K = K + t

4: temporal exemplar(1 to t) = argmaxpa(t, p) + r(t, p)

5: Solve the (3) - SINR

6: Find K ← max (SINR)

7: (D) Output: exemplar, set of clusters, and K

4. Simulation Results

In this section, we compare the SE performance against the γ of several clustering meth-
ods in grid and uniform topologies with the C-RAN environment designed in Section 2 and
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compare the normalized execution time. The following shows the six different clustering
methods covered in this section:

1. AP w/ max K: AP clustering algorithm with max K exhibits the best performance for
Algorithm 1 and is shown in Algorithm 4;

2. Proposed AP 2: AP clustering algorithm with ghd Otsu threshold and the greedy
merging algorithm (Algorithm 3);

3. Proposed AP 1: AP clustering algorithm with Otsu threshold (Algorithm 2);
4. Conventional AP 1 [26]: Conventional AP clustering Algorithm 1;
5. Conventional AP 2 [25]: Conventional AP clustering Algorithm 2;
6. Static CoMP: Static CoMP scheme assumes coordination of four adjacent cells (K = 9).

However, in the uniform topology, the static CoMP method is difficult to define, and
therefore it is not added to the result. The non-CoMP result is also added as the lower
bound result. Table 1 shows the simulation parameters used in the system-level simulator
to derive the results. Pi, which has a direct effect on the γ value, is set to 25.4 dBm, and Pe
is set to increase by 3 dBm from 10 dBm to 31 dBm, where γ = E(INon−CoMP)/E(Iexterior)
[dB] on the x-axis is defined as the ratio of the average non-CoMP interference power to
the average exterior interference power. Thus, the γ = ∞ values in Figures 9–12 indicate
that the exterior interference is 0. The number of RRHs and UEs is set to 36, and each RRH
and UE has a single antenna. In the grid topology, the inter-site distance between RRHs is
assumed to be 50 m. In the uniform topology, the inter-site distance is not defined, but the
RRH has a random location within the same area as the grid topology. The clustering SE
performance is calculated by (4) in the situation where Pi and Pe are set, and both average
SE and 5-percentile UE SE results are derived from Figures 9–12.

Table 1. Simulation parameter. RRD: Radio remote head.

Parameter Value

Center frequency (GHz) 28
Bandwidth (MHz) 20

Number of RRHs and UEs 36
MS receive antenna 1

RRH transmit antenna 1
Pi (dBm) 25.4
Pe (dBm) 10,13,16,19,22,25,28,31

RRH inter-site distance (m) 50
Height of RRH (m) 5
Height of MS (m) 1.5

Figure 9. Average spectral efficiency of various clustering schemes with respect to γ in grid topology.
AP: Affinity propagation.
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Figure 10. Spectral efficiency at 5% outage level of various clustering schemes with respect to γ in
grid topology.

Figure 11. Average spectral efficiency of various clustering schemes with respect to γ in uniform topology.
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Figure 12. Spectral efficiency at 5% outage level of various clustering schemes with respect to γ in
uniform topology.

Figures 9 and 11 show the average SE by γ in grid topology and uniform topology,
respectively, and show that the proposed clustering Algorithms 1 and 2 exhibit better perfor-
mance than the conventional clustering algorithms. The proposed clustering Algorithm 2
shows better performance than the proposed clustering Algorithm 1. Figures 10 and 12
show the results of 5-percentile UE SE in the grid topology and uniform topology, respec-
tively. Figures 10 and 12 show the results of 5-percentile UE SE in grid topology and
uniform topology, respectively. The trend is similar to the average SE result, but the SE
performance of AP w/ max K is much better than that of the other clustering algorithms.
The reason is that the proposed clustering Algorithms 1 and 2 are clustering methods that
consider only K without considering the combination of clusters.

Figure 13 is the result of calculating the normalized execution time of AP-based
clustering methods by the number of cells (RRHs) in the network. In Figure 13, the
conventional AP clustering Algorithms 1 and 2 do not search the preference but use
a initially defined similarity matrix. Naturally, the result of AP w/ max K shows the
highest normalized execution time because the iteration is performed at least 36 times
(the number of RRHs) more than the other algorithms. However, although the proposed
clustering algorithms exhibit high performance in Figures 9–12, they have a normalized
execution time similar to that of the other existing AP clustering algorithms. Hence, the
proposed clustering algorithms exhibit better performance than the conventional clustering
algorithms without a significant increase in time complexity. This result is excellent in
terms of energy efficiency because it shows a similar time complexity even with a better
clustering performance than the conventional clustering algorithm. Figures 14 and 15 show
the average energy efficiency according to (5). This results show that the proposed AP
clustering algorithm has a higher performance than the existing AP clustering algorithm in
terms of energy efficiency.
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Figure 13. Average normalized execution time comparison of the conventional and the proposed
clustering algorithms.

Figure 14. Average energy efficiency of various clustering schemes with respect to γ in grid topology.



Sensors 2021, 21, 480 16 of 18

Figure 15. Average energy efficiency of various clustering schemes with respect to γ in uniform topology.

5. Conclusions

We proposed the use of adaptive thresholding and greedy merging for the AP cluster-
ing of the RRHs for dynamic joint transmission. The proposed method is a simple imaging
method, without preference searching and the accompanying high time complexity. The
clustering performance for a varying γ value, which is the ratio of the exterior interference
to the non-CoMP interference, was analyzed in grid and uniform network topologies.
While the existing AP-based clustering algorithms create an excessive number of clusters
for some channel environments, the proposed clustering Algorithms 1 and 2 generated
a relatively lower number of clusters, providing up to 37.7% and 102.4% improved SEs,
respectively. Furthermore, the increases in the normalized execution time were small, at
most 10.4% and 13%, respectively. Moreover, similar trends for SE were indicated for both
the grid and uniform topologies. In addition, we could infer the average SE result of the
actual distribution of RRHs as a value between the grid and uniform topology results [32].
The proposed algorithms could be extended to consider a more realistic joint transmission,
such as imperfect symbol synchronization owing to the time difference of arrival, in future
studies. Furthermore, we intend to perform an additional experimental verification of the
results of this study.
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