Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite
Abstract
:1. Introduction
2. Classification of Small Molecule Fluorescent Probes for Detecting Hypochlorous Acid/Hypochlorite
2.1. Fluorescent Probes Based on Rhodamine
2.2. Fluorescent Probes Based on BODIPY
2.3. Fluorescent Probes Based on Fluorescein
2.4. Fluorescent Probes Based on Coumarin
2.5. Fluorescent Probes Based on 1,8-Naphthalimide
2.6. Others
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vijayaraghavan, K.; Ramanujam, T.K.; Balasubramanian, N. In situ hypochlorous acid generation for the treatment of syntan wastewater. Waste Manag. 1999, 19, 319–323. [Google Scholar] [CrossRef]
- Sun, M.; Yu, H.; Zhu, H.; Sun, M.; Yu, H.; Zhu, H.; Ma, F.; Zhang, S.; Huang, D.; Wan, S. Oxidative Cleavage-Based Near-Infrared Fluorescent Probe for Hypochlorous Acid Detection and Myeloperoxidase Activity Evaluation. Anal. Chem. 2014, 86, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, R.; Song, B.; Dai, Z.; Jin, D.; Goldy, E.M.; Yuan, J. Development of a functional ruthenium(ii) complex for probing hypochlorous acid in living cells. Dalton Trans. 2014, 43, 8414–8420. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.; Hilderbrand, S.A.; Waterman, P.; Heinecke, J.W.; Weissleder, R.; Libby, P. A Fluorescent Probe for the Detection of Myeloperoxidase Activity in Atherosclerosis-Associated Macrophages. Cell Chem. Biol. 2007, 14, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging. J. Am. Chem. Soc. 2011, 133, 5680–5682. [Google Scholar] [CrossRef]
- Ellis, D.; Thomas, R.C. Microelectrode measurement of the intracellular pH of mammalian heart cells. Nature 1976, 262, 224. [Google Scholar] [CrossRef]
- Zhang, R.G.; Kelen, S.G.; LaManna, J.C.J. High-brightness electron-beam generation and transport. Appl. Phys. 1990, 68, 1101. [Google Scholar]
- Hesse, S.J.A.; Ruijter, G.J.G.; Dijkem, C.; Visser, J. Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger. J. Biotechnol. 2000, 77, 5–15. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Wang, M.J.; Yang, Z.; She, M.Y.; Wang, S.; Liu, P.; Li, J.L.; Shi, Z. High efficient probes with Schiff base functional receptors for hypochlorite sensing under physiological conditions. Chin. Chem. Lett. 2014, 25, 1077–1081. [Google Scholar] [CrossRef]
- Zhang, D. Highly selective and sensitive colorimetric probes for hypochlorite anion based on azo derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 397–401. [Google Scholar] [CrossRef]
- Uno, S.N.; Kamiya, M.; Morozumi, A.; Urano, Y. A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chem. Commun. 2018, 54, 102–105. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, C.; Huo, F.; Chao, J.; Zhang, Y.; Cheng, F. A new highly selective and turn-on fluorescence probe for detection of cyanide. Sens. Actuators B. Chem. 2014, 193, 220–224. [Google Scholar] [CrossRef]
- Ximenes, V.F.; da Fonseca, L.M.; de Almeida, A.C. Taurine bromamine: A potent oxidant of tryptophan residues in albumin—ScienceDirect. Arch. Biochem. Biophys. 2011, 507, 315–322. [Google Scholar] [CrossRef]
- Dickinson, B.C.; Srikun, D.; Chang, C.J. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 2010, 14, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Painter, R.G.; Marrero, L.; Lombard, G.A.; Valentine, V.G.; Nauseef, W.M.; Wang, G. CFTR-mediated halide transport in phagosomes of human neutrophils. J. Leukoc. Biol. 2010, 87, 933–942. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lu, H.H.; Wang, W.T.; Liau, I. Selective and Absolute Quantification of Endogenous Hypochlorous Acid with Quantum-Dot Conjugated Microbeads. Anal. Chem. 2011, 83, 8267. [Google Scholar] [CrossRef]
- Kim, G.; Lee YE, K.; Xu, H.; Philbert, M.A.; Kopelman, R. Philbert and Raoul Kopelman. Nanoencapsulation Method for High Selectivity Sensing of Hydrogen Peroxide inside Live Cells. Anal. Chem. 2010, 82, 2165–2169. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Lin, W.; Yang, Y.; Chen, H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: Rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc. 2012, 134, 1200–1211. [Google Scholar] [CrossRef]
- Zhu, Z.; Ding, H.; Wang, Y.; Fan, C.; Tu, Y.; Liu, G.; Pu, S. Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO with large Stokes based on rhodamine and naphthalimide fluorophores. Tetrahedron 2020, 76, 131291. [Google Scholar] [CrossRef]
- Yang, J.; Fan, M.; Sun, Y.; Zhang, M.; Xue, Y.; Zhang, D.; Wang, T.; Cui, X. A near-infrared fluorescent probe based on phosphorus-substituted rhodamine for deep imaging of endogenous hypochlorous acid in vivo. Sens. Actuators 2020, 307, 127652. [Google Scholar] [CrossRef]
- Long, L.; Zhang, D.; Li, X.; Zhang, J.; Zhang, C.; Zhou, L. A fluorescence ratiometric sensor for hypochlorite based on a novel dual-fluorophore response approach. Anal. Chim. Acta 2013, 775, 100–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, L.; Tang, C.; Pan, S.; Shi, D.; Wang, S.; Li, M.; Guo, Y. A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice. J. Mater. Chem. B 2018, 6, 725–731. [Google Scholar] [CrossRef]
- Li, M.Y.; Li, K.; Liu, Y.H.; Zhang, H.; Yu, K.K.; Liu, X.; Yu, X.Q. Mitochondria-Immobilized Fluorescent Probe for the Detection of Hypochlorite in Living Cells, Tissues, and Zebrafishes. Anal. Chem. 2020, 92, 3262–3269. [Google Scholar] [CrossRef]
- Ma, C.; Zhong, G.; Zhao, Y.; Zhang, P.; Fu, W.; Shen, B. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118545. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
- Liu, S.R.; Vedamalai, M.; Wu, S.P. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide. Anal. Chim. Acta 2013, 800, 71–76. [Google Scholar] [CrossRef]
- Li, H.; Miao, Y.; Liu, Z.; Yang, J.; Jin, C.; Jiang, Y. A mitochondria-targeted fluorescent probe for fast detecting hypochlorite in living cells. Dyes Pigments 2020, 176, 108192. [Google Scholar] [CrossRef]
- Chu, C.J.; Wu, G.S.; Ma, H.I.; Venkatesan, P.; Thirumalaivasan, N.; Wu, S. A fluorescent turn-on probe for detection of hypochlorus acid and its bioimaging in living cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118234. [Google Scholar] [CrossRef]
- Haldar, U.; Sharma, R.; Ruidas, B.; Lee, H.-I. Toward rapid and selective detection of hypochlorous acid in pure aqueous media and its application to cell imaging: BODIPY-derived water-soluble macromolecular chemosensor with high sensitivity. Dyes Pigments 2020, 172, 107858. [Google Scholar] [CrossRef]
- Jin, Y.; Lv, M.; Tao, Y.; Xu, S.; He, J.; Zhang, J.; Zhao, W. A water-soluble BODIPY-based fluorescent probe for rapid and selective detection of hypochlorous acid in living cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 569–575. [Google Scholar] [CrossRef]
- Xu, C.; Qian, Y. The α, β-unsaturated pyrazolone-based fluorescent sensor with red emission and its application for real-time monitoring hypochlorite in cancer cells and zebrafish. Dyes Pigments 2018, 161, 303–312. [Google Scholar] [CrossRef]
- Huang, C.; Qian, Y. A fast-responsed lysosomal-targeted fluorescent probe based on BODIPY with low limit detection for hypochlorous acid and its application of intracellular hypochlorous acid bioimaging. Opt. Mater. 2019, 92, 53–59. [Google Scholar] [CrossRef]
- Xiong, X.Q.; Song, F.L.; Chen, G.W.; Sun, W.; Wang, J.Y.; Gao, P.; Zhang, Y.; Qiao, B.; Li, W.; Sun, S.; et al. Construction oflong-wavelength fluorescein analogues and their application as fluorescent probes. Chem. Eur. J. 2013, 19, 6538–6545. [Google Scholar] [CrossRef] [PubMed]
- An, J.M.; Yan, M.H.; Yang, Z.Y.; Li, T.R.; Zhou, Q.X. A turn-on fluorescent sensor for Zn(II) based on fluorescein-coumarin conjugate. Dyes Pigments 2013, 99, 1–5. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.E.; Choi, M.G.; Ahn, S.; Chang, S.K. Selective chromogenic and fluorogenic signalling of Hg2þ ions using a fluorescein-coumarin conjugate. Dyes Pigments 2010, 84, 54–58. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, M.; Sun, W.; Wang, M.; Liu, S.; Li, Q. Recent progress on synthesis of fluorescein probes. Mini Rev. Org. Chem. 2009, 6, 35–43. [Google Scholar] [CrossRef]
- Lei, J.; Mengyi, X.; Hua, J.; Wang, W.; Wang, Q. A simple fluorescein derived colorimetric and fluorescent ‘off–on’ sensor for the detection of hypochlorite. Anal. Methods 2018, 10, 4562–4569. [Google Scholar]
- Yin, W.; Zhu, H.; Wang, R. A sensitive and selective fluorescence probe based fluorescein for detection of hypochlorous acid and its application for biological imaging. Dyes Pigments 2014, 107, 127–132. [Google Scholar] [CrossRef]
- Wang, N.; Xu, W.; Song, D.; Ma, P. A fluorescein-carbazole-based fluorescent probe for imaging of endogenous hypochlorite in living cells and zebrafish—ScienceDirect. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 227, 117692. [Google Scholar] [CrossRef]
- Jin, X.; Wu, X.; Liu, L.; Wang, Z.; Xie, P.; Ma, A.; Zhou, H.; Chen, W. Dual-Functional Fluorescein-Based Chemosensor for Chromogenic Detection of Fe3+ and Fluorgenic Detection of HOCl. J. Fluoresc. 2017, 27, 2111–2117. [Google Scholar] [CrossRef]
- Jin, X.; Hao, L.; Hu, Y.; She, M.; Shi, W.; Obst, M.; Li, J.; Shi, Z. Two novel fluorescein-based fluorescent probes for hypochlorite and its real applications in tap water and biological imaging. Sens. Actuators B Chem. 2013, 186, 56–60. [Google Scholar] [CrossRef]
- Widdel, F.; Schnell, S.; Heising, S.; Ehrenreich, A.; Assmus, B.; Schink, B. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 1993, 362, 834–836. [Google Scholar] [CrossRef]
- Ehrenreich, F. Widdel, Anaerobic oxidation of ferrous iron by purple bacteria. A new type of phototrophic metabolism. Appl. Environ. Microbiol. 1994, 60, 4517–4526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Chen, H.; Xu, C.; Fan, J.; Xu, W.; Li, Y.; Deng, H.; Shen, J. Ratiometric and colorimetric fluorescent probe for hypochlorite monitor and application for bioimaging in living cells, bacteria and zebrafish. J. Hazard. Mater. 2020, 388, 122029. [Google Scholar] [CrossRef] [PubMed]
- Swamy, K.M.K.; Min, S.P.; Su, J.H.; Sook, K.K.; Ju, H.K.; Lee, C.; Bang, H.; Kim, Y.; Kim, S.J.; Yoon, J. New pyrrolopyridazine derivatives as blue organic luminophors. Tetrahedron 2005, 61, 10227–10234. [Google Scholar] [CrossRef]
- Sun, T.; Moon, J.O.; Choi, M.G.; Cho, Y.; Ham, S.W.; Chang, S.K. Dual signaling of hypervalent iodine reagents by oxidative cleavage of a rhodamine-hydroxamic acid. Sens. Actuators B Chem. 2013, 182, 755–760. [Google Scholar] [CrossRef]
- Cheng, X.; Li, S.; Wang, J.; Li, W. “Turn-On” Fluorescent Probe for Hypochlorite: Successful Bioimaging and Real Application in Tap Water. Chin. J. Org. Chem. 2020, 40, 1941–1947. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, C.; Zhang, S.; Yan, L. A Coumarin-Based Fluorescent Probe for the Detection of Hypochlorite Ions and Its Applications in Test Paper and Cell Imaging. ChemistrySelect 2020, 5, 9240–9244. [Google Scholar] [CrossRef]
- Xiao, W.; Yanmei, Z.; Xu, C.; Song, H.; Li, L.; Zhang, J.; Guo, M. A highly selective fluorescent probe for the detection of hypochlorous acid in tap water and living cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 415–420. [Google Scholar]
- Zhang, H.; Yin, X.; Hong, J.; Deng, Y.; Feng, G. A NIR fluorescence probe having significant fluorescence turn-on signal at 700 nm and large Stokes shift for rapid detection of HOCl In Vivo. Talanta 2021, 223, 121768. [Google Scholar] [CrossRef]
- Shi, L.; Yang, S.; Hong, H.J.; Li, Y.; Hu, H.; Shao, J.; Zhang, K.; Gong, S. A novel target and pH dual-activatable fluorescent probe for precisely detecting hypochlorite in lysosomes. Anal. Chim. Acta 2019, 1094, 122–129. [Google Scholar] [CrossRef]
- Hou, J.T.; Wang, B.; Fan, P.; Duan, R.; Cao, X.; Zhu, L.; Wang, S. A novel benzothiazine-fused coumarin derivative for sensing hypochlorite with high performance. Dyes Pigments 2020, 182, 108675. [Google Scholar] [CrossRef]
- Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett. 2005, 7, 889–892. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhou, Y.; Yoon, J.; Kim, Y.; Kim, S.J.; Kim, J.S. Naphthalimide modified rhodamine derivative: Ratiometric and selective fluorescent Sensor for Cu2+ based on two different approaches. Org. Lett. 2010, 12, 3852–3855. [Google Scholar] [CrossRef]
- Reger, D.L.; Debreczeni, A.; Reinecke, B.; Rassolov, V.; Smith, M.D.; Semeniuc, R.F. Erratum: Highly organized structures and unusual magnetic properties of paddlewheel copper(II) carboxylate dimers containing the π-π Stacking, 1,8-naphthalimide synthon. Inorg. Chem. 2009, 48, 8911–8924. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, W.; Liu, R. A colorimetric and ratiometric fluorescent probe for palladium. Org. Lett. 2011, 13, 4922–4925. [Google Scholar] [CrossRef]
- Dong, J.; Hu, J.; Baigude, H.; Zhang, H. A novel ferrocenyl-naphthalimide as a multichannel probe for the detection of Cu(II) and Hg(II) in aqueous media and living cells. Dalton Trans. 2018, 47, 314–322. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Y.H.; Yang, W.; Xu, D.; Zhang, K. Water soluble 1,8-naphthalimide fluorescent pH probes and their application to bioimagings. J. Photochem. Photobiol. A Chem. 2011, 223, 111–118. [Google Scholar] [CrossRef]
- Cui, D.W.; Qian, X.H.; Liu, F.Y.; Zhang, R. Novel fluorescent ph sensors based on intramolecular hydrogen bonding ability of naphthalimide. Org. Lett. 2004, 6, 2757–2760. [Google Scholar] [CrossRef]
- Bojinov, V.B.; Simeonov, D.B.; Georgiev, N.I. A novel blue fluorescent 4-(1,2,2,6,6-pentamethylpiperidin-4-yloxy)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Dyes Pigments 2008, 76, 41–46. [Google Scholar] [CrossRef]
- Ajayaghosh, A.; Carol, P.; Sreejith, S. A ratiometric fluorescence probe for selective visual sensing of Zn2+. J. Am. Chem. Soc. 2005, 127, 14962–14963. [Google Scholar] [CrossRef]
- Atilgan, S.; Ozdemir, T.; Akkaya, E.U. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Org. Lett. 2008, 10, 4065–4067. [Google Scholar] [CrossRef]
- Do, J.H.; Kim, H.N.; Yoon, J.; Kim, J.; Kim, H. A rationally designed fluorescence turn-on probe for the gold(III) ion. Org. Lett. 2010, 12, 932–934. [Google Scholar] [CrossRef]
- Takashima, I.; Kanegae, A.; Sugimoto, M.; Ojida, A. Aza-crown-ether-appended xanthene: Selective ratiometric fluorescent probe for silver(I) ion based on arene–metal ion interaction. Inorg. Chem. 2014, 53, 7080–7082. [Google Scholar] [CrossRef]
- Guo, B.P.; Jing, J.; Nie, L.X.; Xin, F.; Gao, C.; Yang, W.; Zhang, X. A lysosome targetable versatile fluorescent probe for imaging viscosity and peroxynitrite with different fluorescence signals in living cells. J. Mater. Chem. B 2018, 6, 580–585. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.-Q.; Huo, Y.Y.; Zhang, H.; Wang, L.; Zhang, P.; Song, D.; Shi, Y.; Guo, W. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J. Am. Chem. Soc. 2014, 136, 574–577. [Google Scholar] [CrossRef]
- He, L.W.; Xu, Q.Y.; Liu, Y.; Wei, H.; Tang, Y.; Lin, W. Coumarin-based turn-on fluorescence probe for specific detection of glutathione over cysteine and homocysteine. ACS Appl. Mater. Interfaces 2016, 7, 12809–12813. [Google Scholar] [CrossRef]
- Pang, L.F.; Zhou, Y.M.; Gao, W.L.; Zhang, J.; Song, H.; Wang, X.; Wang, Y.; Peng, X. Curcumin-based fluorescent and colorimetric probe for detecting cysteine in living cells and zebrafish. Ind. Eng. Chem. Res. 2017, 56, 7650–7655. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Li, Y.; Zan, W.Y.; Zhang, J.; Chen, Z. A two-photon off-on fluorescence probe for imaging thiols in live cells and tissues. Photochem. Photobiol. Sci. 2016, 15, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, N.; Jana, D.; Ghorai, B.K.; Jana, N. Detection and monitoring of amyloid fibrillation using a fluorescence “switch-on” probe. ACS Appl. Mater. Interfaces 2015, 7, 25813–25820. [Google Scholar] [CrossRef]
- Kong, Y.; Yao, H.Q.; Ren, H.J.; Subbian, S.; Cirillo, S.L.G.; Sacchettini, J.C.; Rao, J.; Cirillo, J.D. Imaging tuberculosis with endogenous β-lactamase reporter enzyme fluorescence in live mice. Proc. Natl. Acad. Sci. USA 2010, 107, 12239–12244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teoh, C.L.; Su, D.D.; Sahu, S.; Yun, S.; Drummand, E.; Prelli, F.; Lim, S.; Cho, S.; Ham, S.; Wisniewski, T.; et al. Chemical fluorescent probe for detection of Aβ oligomers. J. Am. Chem. Soc. 2015, 137, 13503–13509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; Feng, L.; Wang, D.D.; Dai, Z.; Wang, P.; Zou, L.; Liu, Z.; Wang, J.; Yu, Y.; Ge, G.; et al. A two-photon ratiometric fluorescent probe for imaging carboxylesterase 2 in living cells and tissues. ACS Appl. Mater. Interfaces 2015, 7, 28474–28481. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Sun, H.; Wei, J.; Zhang, R.; Han, X.; Ni, Z. A highly sensitive, fast responsive and reversible naphthalimide-based fluorescent probe for hypochlorous acid and ascorbic acid in aqueous solution and living cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 247, 119138. [Google Scholar] [CrossRef]
- Wang, K.; Jia, P.; Li, X.; Zhang, X.; Liu, C.; Yu, C.; Zhu, Y.; Li, Z.; Sheng, W.; Zhu, B. A simple p-methylaminophenylether-based fluorescent probe for detecting native hypochlorous acid in live cells and zebrafish. Dyes Pigments 2020, 177, 108310. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, X.; Liu, Y.; Shen, Z.; Ge, Z.; Huang, H.; Li, X.; Wang, Y. An endoplasmic reticulum-targeted two-photon fluorescent probe for bioimaging of HClO generated during sleep deprivation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 229, 117992. [Google Scholar] [CrossRef]
- Wu, G.S.; Thirumalaivasan, N.; Lin, T.C.; Wu, S. Ultrasensitive and Specific Two-Photon Fluorescence Detection of Hypochlorous Acid by a Lysosome-Targeting Fluorescent Probe for Cell Imaging. J. Pharm. Biomed. Anal. 2020, 190, 113545. [Google Scholar] [CrossRef]
- Guo, B.; Nie, H.; Yang, W.; Tian, Y.; Jing, J.; Zhang, X. A highly sensitive and rapidly responding fluorescent probe with a large Stokes shift for imaging intracellular hypochlorite. Sens. Actuators B Chem. 2016, 236, 459–465. [Google Scholar] [CrossRef]
- Chang, C.; Wang, F.; Qiang, J.; Zhang, Z.; Chen, Y.; Zhang, W.; Wang, Y.; Chen, X. Benzothiazole-based fluorescent sensor for hypochlorite detection and its application for biological imaging. Sens. Actuators B Chem. 2017, 243, 22–28. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Song, J.; Xu, H.; Wang, S. A highly specific and sensitive turn-on fluorescence probe for hypochlorite detection based on anthracene fluorophore and its bioimaging applications. Dyes Pigments 2018, 161, 172–181. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, Z.; Liu, R.; Tang, Y. A novel ratiometric and colorimetric fluorescent probe for hypochlorite based on cyanobiphenyl and its applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 576–581. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Z.; Kuai, Z.; Wang, R.; Yang, Q.; Shan, Y.; Li, Y. A new turn-on fluorescent probe towards hypochlorite in living cells. Anal. Methods 2017, 9, 864–870. [Google Scholar] [CrossRef]
- Lu, Z.; Shangguan, M.; Jiang, X.; Xu, P.; Hou, L.; Wang, T. A water-soluble cyclometalated iridium(III) complex with fluorescent sensing capability for hypochlorite. Dyes Pigments 2019, 171, 107715. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.-G.; Yuan, Q.; Lv, P.; Chen, K. Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite. Sensors 2021, 21, 6326. https://doi.org/10.3390/s21196326
Song Z-G, Yuan Q, Lv P, Chen K. Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite. Sensors. 2021; 21(19):6326. https://doi.org/10.3390/s21196326
Chicago/Turabian StyleSong, Zhi-Guo, Qing Yuan, Pengcheng Lv, and Kun Chen. 2021. "Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite" Sensors 21, no. 19: 6326. https://doi.org/10.3390/s21196326
APA StyleSong, Z.-G., Yuan, Q., Lv, P., & Chen, K. (2021). Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite. Sensors, 21(19), 6326. https://doi.org/10.3390/s21196326