Graphical Optimization of Spectral Shift Reconstructions for Optical Backscatter Reflectometry
Abstract
:1. Introduction
2. Background
2.1. Measurement Theory
2.2. Spectral Shift and Quality
2.3. Spectral Shift Reconstructions
3. Materials and Methods
3.1. Experimental Setup
3.2. Network Formulation of OBR Data
3.3. Software Implementation and Data Usage
4. Results
4.1. Graphical Optimization of Non-Grated Fibers
4.2. Graphical Optimization of Fibers with Type-II FBGs
4.3. Resolution of Large Spectral Shifts
4.4. Computational Efficiency
5. Discussion
5.1. Comparison to Previous Works
5.2. Computational Efficiency
5.3. FBG Applications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FBG | Fiber Bragg grating |
MST | Maximum spanning tree |
OBR | Optical backscatter reflectometry |
OFDR | Optical frequency domain reflectometry |
SNR | Signal-to-noise ratio |
Appendix A. Performance of Adaptive Algorithms for Small Stimuli
References
- Bao, X.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie, C.M.; Sridharan, N. In situ measurement of phase transformations and residual stress evolution during welding using spatially distributed fiber-optic strain sensors. Meas. Sci. Technol. 2020, 31, 125602. [Google Scholar] [CrossRef]
- Heinze, S.; Echtermeyer, A.T. A running reference analysis method to greatly improve optical backscatter reflectometry strain data from the inside of hardening and shrinking materials. Appl. Sci. 2018, 8, 1137. [Google Scholar] [CrossRef] [Green Version]
- De Miguel-Soto, V.; Leandro, D.; Lopez-Aldaba, A.; Beato-López, J.J.; Pérez-Landazábal, J.I.; Auguste, J.L.; Jamier, R.; Roy, P.; Lopez-Amo, M. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements. Sensors 2017, 17, 2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.; Harold, M.P.; Luss, D. Optical frequency domain reflectometry measurements of spatio-temporal temperature inside catalytic reactors: Applied to study wrong-way behavior. Chem. Eng. J. 2013, 234, 312–317. [Google Scholar] [CrossRef]
- Lomperski, S.; Bremer, N.; Gerardi, C. Distributed temperature sensing inside a 19-rod bundle. Nucl. Eng. Des. 2017, 319, 201–209. [Google Scholar] [CrossRef]
- Lomperski, S.; Gerardi, C.; Pointer, W.D. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field. Exp. Fluids 2015, 56, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Petrie, C.M.; Sweeney, D.C.; Howard, R.H.; Felde, D.K.; McDuffee, J.L. Single-phase, natural circulation annular flow measurements for cartridge loop irradiation experiments. Nucl. Eng. Des. 2020, 370, 110900. [Google Scholar] [CrossRef]
- Lu, P.; Buric, M.P.; Byerly, K.; Moon, S.R.; Nazmunnahar, M.; Simizu, S.; Leary, A.M.; Beddingfield, R.B.; Sun, C.; Zandhuis, P.; et al. Real-Time Monitoring of Temperature Rises of Energized Transformer Cores with Distributed Optical Fiber Sensors. IEEE Trans. Power Deliv. 2019, 34, 1588–1598. [Google Scholar] [CrossRef]
- Birri, A.; Blue, T.E. Methodology for inferring reactor core power distribution from an optical fiber based gamma thermometer array. Prog. Nucl. Energy 2020, 130, 103552. [Google Scholar] [CrossRef]
- Birri, A.; Petrie, C.M.; Blue, T.E. Parametric Analysis of an Optical Fiber–Based Gamma Thermometer for University Research Reactors Using an Analytic Thermal Model. Nucl. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Weathered, M.T.; Anderson, M.H. On the development of a robust optical fiber-based level sensor. IEEE Sens. J. 2017, 18, 583–588. [Google Scholar] [CrossRef]
- Petrie, C.M.; McDuffee, J.L. Liquid level sensing for harsh environment applications using distributed fiber optic temperature measurements. Sens. Actuators A Phys. 2018, 282, 114–123. [Google Scholar] [CrossRef]
- Petrie, C.M.; Sridharan, N.; Subramanian, M.; Hehr, A.; Norfolk, M.; Sheridan, J. Embedded metallized optical fibers for high temperature applications. Smart Mater. Struct. 2019, 28, 055012. [Google Scholar] [CrossRef]
- Petrie, C.M.; Sridharan, N.; Hehr, A.; Norfolk, M.; Sheridan, J. High-temperature strain monitoring of stainless steel using fiber optics embedded in ultrasonically consolidated nickel layers. Smart Mater. Struct. 2019, 28, 085041. [Google Scholar] [CrossRef]
- Kong, C.Y.; Soar, R. Method for embedding optical fibers in an aluminum matrix by ultrasonic consolidation. Appl. Opt. 2005, 44, 6325–6333. [Google Scholar] [CrossRef]
- Havermann, D.; Mathew, J.; MacPherson, W.N.; Maier, R.R.; Hand, D.P. Temperature and strain measurements with fiber Bragg gratings embedded in stainless steel 316. J. Light. Technol. 2014, 33, 2474–2479. [Google Scholar] [CrossRef]
- Petrie, C.M.; Schrell, A.M.; Leonard, D.N.; Yang, Y.; Jolly, B.C.; Terrani, K.A. Embedded sensors in additively manufactured silicon carbide. J. Nucl. Mater. 2021. [Google Scholar] [CrossRef]
- Ghazanfari, A.; Li, W.; Leu, M.C.; Zhuang, Y.; Huang, J. Advanced ceramic components with embedded sapphire optical fiber sensors for high temperature applications. Mater. Des. 2016, 112, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Froggatt, M.; Moore, J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt. 1998, 37, 1735–1740. [Google Scholar] [CrossRef]
- Wood, T.W.; Blake, B.; Blue, T.E.; Petrie, C.M.; Hawn, D. Evaluation of the performance of distributed temperature measurements with single-mode fiber using rayleigh backscatter up to 1000 °C. IEEE Sens. J. 2014, 14, 124–128. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Chen, L.; Bao, X. Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR. Sensors 2020, 20, 6407. [Google Scholar] [CrossRef]
- Barrera, D.; Finazzi, V.; Villatoro, J.; Sales, S.; Pruneri, V. Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications. IEEE Sens. J. 2011, 12, 107–112. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Torres-Arredondo, M.A.; Güemes, A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison. Compos. Struct. 2016, 135, 156–166. [Google Scholar] [CrossRef]
- Hou, G.Y.; Li, Z.X.; Wang, K.D.; Hu, J.X. Structural Deformation Sensing Based on Distributed Optical Fiber Monitoring Technology and Neural Network. KSCE J. Civ. Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wang, P.; Bai, Q.; Gao, Y.; Zhang, H.; Jin, B. Pattern Recognition for Distributed Optical Fiber Vibration Sensing: A Review. IEEE Sens. J. 2021, 21, 11983–11998. [Google Scholar]
- Jia, Z.; Ho, S.C.; Li, Y.; Kong, B.; Hou, Q. Multipoint hoop strain measurement based pipeline leakage localization with an optimized support vector regression approach. J. Loss Prev. Process Ind. 2019, 62, 103926. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, M.; Liu, J.; Luan, N. Numerical Analysis and Recursive Compensation of Position Deviation for a Sub-Millimeter Resolution OFDR. Sensors 2020, 20, 5540. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, J.; Tang, C.; Wang, X.; Lan, T.; Kan, B. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR. Opt. Express 2019, 27, 35823–35829. [Google Scholar] [CrossRef]
- Fan, X.; Koshikiya, Y.; Ito, F. Phase-noise-compensated optical frequency-domain reflectometry. IEEE J. Quantum Electron. 2009, 45, 594–602. [Google Scholar]
- Sweeney, D.C.; Schrell, A.M.; Petrie, C.M. An Adaptive Reference Scheme to Extend the Functional Range of Optical Backscatter Reflectometry in Extreme Environments. IEEE Sens. J. 2020, 21, 498–509. [Google Scholar] [CrossRef]
- Bado, M.F.; Casas, J.R.; Gómez, J. Post-processing algorithms for distributed optical fiber sensing in structural health monitoring applications. Struct. Health Monit. 2021, 20, 661–680. [Google Scholar] [CrossRef]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666. [Google Scholar] [CrossRef] [Green Version]
- Sang, A.K.; Froggatt, M.E.; Gifford, D.K.; Kreger, S.T.; Dickerson, B.D. One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber. IEEE Sens. J. 2008, 8, 1375–1380. [Google Scholar] [CrossRef]
- Kreger, S.T.; Sang, A.K.; Gifford, D.K.; Froggatt, M.E. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter. In Fiber Optic Sensors and Applications VI, Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 13–17 April 2009; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7316, p. 73160A. [Google Scholar]
- Sandryhaila, A.; Moura, J.M. Discrete signal processing on graphs: Frequency analysis. IEEE Trans. Signal Process. 2014, 62, 3042–3054. [Google Scholar] [CrossRef] [Green Version]
- Sandryhaila, A.; Moura, J.M. Discrete signal processing on graphs. IEEE Trans. Signal Process. 2013, 61, 1644–1656. [Google Scholar] [CrossRef] [Green Version]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Jarnık, V. About a certain minimal problem. Práce Moravské Prırodovedecké Spolecnosti 1930, 6, 57–63. [Google Scholar]
- Prim, R.C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 1957, 36, 1389–1401. [Google Scholar] [CrossRef]
- Petrie, C.M.; Hawn, D.P.; Windl, W.; Blue, T.E. Reactor radiation-induced attenuation in fused silica optical fibers heated up to 1000 °C. J. Non-Cryst. Solids 2015, 409, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Cheymol, G.; Long, H.; Villard, J.L.; Brichard, B. High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor. IEEE Trans. Nucl. Sci. 2008, 55, 2252–2258. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, H.; Liu, J.; Li, Y. Distributed temperature sensing based on Rayleigh scattering in irradiated optical fiber. IEEE Sens. J. 2016, 16, 8928–8935. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, J.; Suo, L.; Wu, Z.; Zhou, D.P.; Tan, J. Performance investigation of OFDR sensing system with a wide strain measurement range. J. Light. Technol. 2019, 37, 3721–3727. [Google Scholar] [CrossRef]
- Kreger, S.T.; Gifford, D.K.; Froggatt, M.E.; Sang, A.K.; Duncan, R.G.; Wolfe, M.S.; Soller, B.J. High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter. In Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 18–22 March 2007; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6530, p. 65301R. [Google Scholar]
- Cooper, D.J.; Coroy, T.; Smith, P.W. Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays. Appl. Opt. 2001, 40, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Qian, L.; Zhou, C.; Zheng, Z.; Yuan, Y.; Xu, R.; Jiang, D. Crosstalk and ghost gratings in a large-scale weak fiber Bragg grating array. J. Light. Technol. 2016, 35, 2032–2036. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sweeney, D.C.; Sweeney, D.M.; Petrie, C.M. Graphical Optimization of Spectral Shift Reconstructions for Optical Backscatter Reflectometry. Sensors 2021, 21, 6154. https://doi.org/10.3390/s21186154
Sweeney DC, Sweeney DM, Petrie CM. Graphical Optimization of Spectral Shift Reconstructions for Optical Backscatter Reflectometry. Sensors. 2021; 21(18):6154. https://doi.org/10.3390/s21186154
Chicago/Turabian StyleSweeney, Daniel C., Dennis M. Sweeney, and Christian M. Petrie. 2021. "Graphical Optimization of Spectral Shift Reconstructions for Optical Backscatter Reflectometry" Sensors 21, no. 18: 6154. https://doi.org/10.3390/s21186154
APA StyleSweeney, D. C., Sweeney, D. M., & Petrie, C. M. (2021). Graphical Optimization of Spectral Shift Reconstructions for Optical Backscatter Reflectometry. Sensors, 21(18), 6154. https://doi.org/10.3390/s21186154