Seasonal Snowpack Classification Based on Physical Properties Using Near-Infrared Proximal Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Measurements
2.1.1. Physical Properties of Snow
2.1.2. Optical Properties of Snow
2.2. Statistical Analysis of Data
2.2.1. Principal Component Analysis (PCA) of NIR Spectra
2.2.2. Hierarchical Ascending Classification of Near Infrared Spectra
2.3. Accuracy Assessment
3. Results and Discussion
3.1. Descriptive Analysis
3.2. Visualization and Reduction of Spectral Dimensionality by Principal Components Analysis
3.3. Unsupervised Spectral Reflectance Classification
3.4. Method Assessement Using a Confusion Matrix
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langlois, A.; Royer, A.; Montpetit, B.; Picard, G.; Brucker, L.; Arnaud, L.; Harvey-Collard, P.; Fily, M.; Goïta, K. On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Reg. Sci. Technol. 2010, 61, 34–42. [Google Scholar] [CrossRef]
- Gray, D.M.; Male, D.H. Handbook of Snow: Principles, Processes, Management & Use; Pergamon: Berlin, Germany, 1981. [Google Scholar]
- Marsh, P. Water flux in melting snow covers. In Advances in Porous Media, Vol. 1; Corapcioglu, M.Y., Ed.; Elsevier: Amsterdam, The Netherland, 1991; Volume 6, pp. 1–124. [Google Scholar]
- Kinar, N.; Pomeroy, J. Measurement of the physical properties of the snowpack. Rev. Geophys. 2015, 53, 481–544. [Google Scholar] [CrossRef]
- Fierz, C.; Armstrong, R.L.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.M.; Nishimura, K.; Satyawali, P.K.; Sokratov, S.A. The International Classification for Seasonal Snow on the Ground; UNESCO/IHP: Paris, France, 2009; Volume 25. [Google Scholar]
- Horton, S.; Jamieson, B. Spectral measurements of surface hoar crystals. J. Glaciol. 2017, 63, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Schneebeli, M.; Sokratov, S.A. Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrol. Process. 2004, 18, 3655–3665. [Google Scholar] [CrossRef]
- Colbeck, S. An overview of seasonal snow metamorphism. Rev. Geophys. 1982, 20, 45–61. [Google Scholar] [CrossRef]
- Dominé, F.; Lauzier, T.; Cabanes, A.; Legagneux, L.; Kuhs, W.F.; Techmer, K.; Heinrichs, T. Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech. 2003, 62, 33–48. [Google Scholar] [CrossRef]
- Colbeck, S. Theory of metamorphism of dry snow. J. Geophys. Res. Oceans 1983, 88, 5475–5482. [Google Scholar] [CrossRef]
- Gubler, H. Model for dry snow metamorphism by interparticle vapor flux. J. Geophys. Res. Atmos. 1985, 90, 8081–8092. [Google Scholar] [CrossRef]
- Flin, F.; Brzoska, J.-B.; Lesaffre, B.; Coléou, C.; Pieritz, R.A. Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. Ann. Glaciol. 2004, 38, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Taillandier, A.S.; Domine, F.; Simpson, W.R.; Sturm, M.; Douglas, T.A. Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions. J. Geophys. Res. Earth Surface 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Colbeck, S. Classification of seasonal snow cover crystals. Water Resour. Res. 1986, 22, 59S–70S. [Google Scholar] [CrossRef]
- Pahaut, E. Les Cristaux de Neige et Leurs Métamorphoses; Direction de la Météorologie Nationale: Dar-el-Beida, Morocco, 1975. [Google Scholar]
- Colbeck, S.C. The international Classification for Seasonal Snow on the Ground; UNESCO/Division of Water Sciences: Paris, France, 1985. [Google Scholar]
- Jamieson, B.; Johnston, C.D. Evaluation of the shear frame test for weak snowpack layers. Ann. Glaciol. 2001, 32, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, J.; Jamieson, J. Snow cover properties for skier triggering of avalanches. Cold Reg. Sci. Technol. 2001, 33, 207–221. [Google Scholar] [CrossRef]
- Jagt, B.V.; Lucieer, A.; Wallace, L.; Turner, D.; Durand, M. Snow depth retrieval with UAS using photogrammetric techniques. Geosciences 2015, 5, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Fierz, C.; Baunach, T. Quantifying grain-shape changes in snow subjected to large temperature gradients. Ann. Glaciol. 2000, 31, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Molotch, N.P.; Cassidy, M.; Flanner, M.; Steffen, K. Contact spectroscopy for determination of stratigraphy of snow optical grain size. J. Glaciol. 2007, 53, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Hoff, J.T.; Gregor, D.; Mackay, D.; Wania, F.; Jia, C.Q. Measurement of the specific surface area of snow with the nitrogen adsorption technique. Environ. Sci. Technol. 1998, 32, 58–62. [Google Scholar] [CrossRef]
- Dominé, F.; Cabanes, A.; Taillandier, A.-S.; Legagneux, L. Specific surface area of snow samples determined by CH4 adsorption at 77 K and estimated by optical microscopy and scanning electron microscopy. Environ. Sci. Technol. 2001, 35, 771–780. [Google Scholar] [CrossRef]
- Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol. 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Berger, K.; Wang, Z.; Danner, M.; Wocher, M.; Mauser, W.; Hank, T. Simulation of Spaceborne Hyperspectral Remote Sensing to Assist Crop Nitrogen Content Monitoring in Agricultural Crops. In Proceedings of the IGARSS 2018 EEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3801–3804. [Google Scholar]
- Roggo, Y.; Edmond, A.; Chalus, P.; Ulmschneider, M. Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal. Chim. Acta 2005, 535, 79–87. [Google Scholar] [CrossRef]
- Karimi, Y.; Maftoonazad, N.; Ramaswamy, H.S.; Prasher, S.O.; Marcotte, M. Application of hyperspectral technique for color classification avocados subjected to different treatments. Food Bioprocess Technol. 2012, 5, 252–264. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev. 2018, 53, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Osborne, B.G. Near-infrared spectroscopy in food analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Chauchard, F.; Cogdill, R.; Roussel, S.; Roger, J.; Bellon-Maurel, V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom. Intell. Lab. Syst. 2004, 71, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Haq, M.A.; Ghosh, A.; Rahaman, G.; Baral, P. Artificial neural network-based modeling of snow properties using field data and hyperspectral imagery. Nat. Resour. Model. 2019, 32, e12229. [Google Scholar] [CrossRef]
- Kulkarni, A.; Srinivasulu, J.; Manjul, S.; Mathur, P. Field based spectral reflectance studies to develop NDSI method for snow cover monitoring. J. Indian Soc. Remote Sens. 2002, 30, 73–80. [Google Scholar] [CrossRef]
- Negi, H.; Singh, S.; Kulkarni, A.; Semwal, B. Field-based spectral reflectance measurements of seasonal snow cover in the Indian Himalaya. Int. J. Remote Sens. 2010, 31, 2393–2417. [Google Scholar] [CrossRef]
- Nolin, A.W.; Dozier, J. A hyperspectral method for remotely sensing the grain size of snow. Remote Sens. Environ. 2000, 74, 207–216. [Google Scholar] [CrossRef]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Eppanapelli, L.K.; Lintzén, N.; Casselgren, J.; Wåhlin, J. Estimation of Liquid Water Content of Snow Surface by Spectral Reflectance. J. Cold Reg. Eng. 2018, 32, 05018001. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Gallet, J.-C.; Domine, F.; Zender, C.; Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere 2009, 3, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Zuanon, N. IceCube, a portable and reliable instruments for snow specific surface area measurement in the field. In Proceedings of the International Snow Science Workshop Grenoble-Chamonix Mont-Blance-2013 Proceedings, Grenoble, France, 7–11 October 2013; pp. 1020–1023. [Google Scholar]
- Gergely, M.; Wolfsperger, F.; Schneebeli, M. Simulation and validation of the InfraSnow: An instrument to measure snow optically equivalent grain size. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4236–4247. [Google Scholar] [CrossRef]
- Matzl, M.; Schneebeli, M. Measuring Specific Surface Area of Snow by Near-Infrared Photography; Cambridge University Press: Cambridge, UK, 2006; Volume 52. [Google Scholar]
- Donahue, C.; Skiles, S.M.; Hammonds, K. In situ effective snow grain size mapping using a compact hyperspectral imager. J. Glaciol. 2021, 67, 49–57. [Google Scholar] [CrossRef]
- Bohren, C.F.; Beschta, R.L. Snowpack albedo and snow density. Cold Reg. Sci. Technol. 1979, 1, 47–50. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Park, B.; Chen, Y.-R.; Hruschka, W.R.; Shackelford, S.D.; Koohmaraie, M. Principal component regression of near-infrared reflectance spectra for beef tenderness prediction. Trans. Am. Soc. Agric. Eng. 2001, 44, 609–616. [Google Scholar] [CrossRef]
- Jambu, M.; Lebeaux, M.-O. Classification Automatique pour L’analyse des Données; Dunod: Paris, France, 1978; Volume 1. [Google Scholar]
- Randriamihamison, N.; Neuvial, P.; Vialaneix, N. Classification Ascendante Hiérarchique, Contrainte D’ordre: Conditions D’applicabilité, Interprétabilité des Dendrogrammes; Institut de Mathématiques de Toulouse: Toulouse, France, 2019. [Google Scholar]
- Pope, A.; Rees, W.G. Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sens. Environ. 2014, 141. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Libois, Q. Evolution des Propriétés Physiques de Neige de Surface sur le Plateau Antarctique. Observations et Modélisation du Transfert Radiatif et du Métamorphisme. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2014; p. 280. [Google Scholar]
- Marbouty, D. Les propriétés physiques de la neige. La Houille Blanche 1984, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.L.; Brun, E. Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
Winter Season | Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|
January | February | March | April | |||||
Max | Min | Max | Min | Max | Min | Max | Min | |
2018 | −7.7 | −18.3 | −2.1 | −15.2 | 1.6 | −7.1 | 5.5 | −4 |
2019 | −8.2 | −19 | −6.2 | −18.7 | −0.2 | −12.7 | 6.2 | −1.6 |
2020 | −4.5 | −13.2 | −3.2 | −17.1 | 1.8 | −8.6 | 7.1 | −2.8 |
Winter Season | Snow on the Ground (cm) | |||||||
---|---|---|---|---|---|---|---|---|
January | February | March | April | |||||
Max | Min | Max | Min | Max | Min | Max | Min | |
2018 | 67 | 24 | 81 | 58 | 80 | 48 | 56 | 2 |
2019 | 79 | 35 | 105 | 64 | 105 | 70 | 71 | 7 |
2020 | 49 | 14 | 76 | 47 | 85 | 61 | 64 | 0 |
Grain Type | Grain Size | Number of Samples | Density (kg m−3) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<100 | 100–150 | 150–200 | 200–250 | 250–300 | 300–350 | 350–400 | 400–450 | 450–500 | >500 | |||||||||||
+ (PP) | <1 mm | 9 | | |||||||||||||||||
λ (DF) | <1 mm | 10 | | |||||||||||||||||
□ (FC) | 1–2 mm | 25 | | |||||||||||||||||
• (RG) | 1–2 mm | 35 | | |||||||||||||||||
˄ (DH) | >2 mm | 16 | | |||||||||||||||||
ᴼ (MF) | >2 mm | 20 | |
Observed | |||||||
---|---|---|---|---|---|---|---|
Estimated | C1 | C2 | C3 | Total | Commission error (%) | Success rate (%) | |
C1 | 15 | 3 | 1 | 19 | 21% | 83 | |
C2 | 3 | 52 | 3 | 58 | 10% | 90 | |
C3 | 3 | 4 | 30 | 37 | 19% | 81 | |
Total | 21 | 59 | 34 | 114 | - | - | |
Error omission (%) | 29 | 12 | 12 | - | - | - | |
Success rate (%) | 71 | 88 | 88 | - | - | - | |
Global success (%) | - | - | - | - | - | 0.85 | |
Kappa Index | - | - | - | - | - | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Oufir, M.K.; Chokmani, K.; El Alem, A.; Agili, H.; Bernier, M. Seasonal Snowpack Classification Based on Physical Properties Using Near-Infrared Proximal Hyperspectral Data. Sensors 2021, 21, 5259. https://doi.org/10.3390/s21165259
El Oufir MK, Chokmani K, El Alem A, Agili H, Bernier M. Seasonal Snowpack Classification Based on Physical Properties Using Near-Infrared Proximal Hyperspectral Data. Sensors. 2021; 21(16):5259. https://doi.org/10.3390/s21165259
Chicago/Turabian StyleEl Oufir, Mohamed Karim, Karem Chokmani, Anas El Alem, Hachem Agili, and Monique Bernier. 2021. "Seasonal Snowpack Classification Based on Physical Properties Using Near-Infrared Proximal Hyperspectral Data" Sensors 21, no. 16: 5259. https://doi.org/10.3390/s21165259
APA StyleEl Oufir, M. K., Chokmani, K., El Alem, A., Agili, H., & Bernier, M. (2021). Seasonal Snowpack Classification Based on Physical Properties Using Near-Infrared Proximal Hyperspectral Data. Sensors, 21(16), 5259. https://doi.org/10.3390/s21165259