FlexiS—A Flexible Sensor Node Platform for the Internet of Things
Abstract
:1. Introduction
2. Review of WSN Platforms
2.1. Microcontroller Versus FPGA Approach
2.2. Summary of Sensor Node Platforms
3. Design Considerations
4. The Proposed Sensor Node
4.1. Memory and IO
4.2. Programming Interface and Power Supply
4.3. Wireless Communication
5. FPGA Programming
5.1. Manual Reconfiguration
5.2. Reconfiguration Using Multiboot
6. Wireless Networking Set up and Applications
6.1. Temperature Sensing
6.2. Simple Actuation and PWM Fan Control
7. Experiments and Results
7.1. Test Applications
7.2. Real-Time State Transitions
7.3. Graphical User Interface
7.4. Power Consumption
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kopetz, H. Internet of things. In Real-Time Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 307–323. [Google Scholar]
- IntelCorporation. A Guide to the Internet of Things. Available online: https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html (accessed on 21 December 2019).
- Stolpe, M. The Internet of Things: Opportunities and Challenges for Distributed Data Analysis. SIGKDD Explor. Newsl. 2016, 18, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Raghavendra, C.; Sivalingam, K.; Znati, T. Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Akyildiz, I.; Melodia, T.; Chowdhury, K. A survey on wireless multimedia sensor networks. Comput. Netw. 2007, 51, 921–960. [Google Scholar] [CrossRef]
- Arduino. Arduino. Available online: https://www.arduino.cc (accessed on 25 October 2020).
- Pham, C. Communication performances of IEEE 802.15.4 wireless sensor motes for data-intensive applications: A comparison of WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image surveillance. J. Netw. Comput. Appl. 2014, 46, 48–59. [Google Scholar] [CrossRef]
- Verizon. State of the Market: The Internet of Things 2015. Available online: http://www.verizonenterprise.com/ (accessed on 12 March 2019).
- Aziz, S.M.; Pham, D.M. Energy efficient image transmission in wireless multimedia sensor networks. Commun. Lett. IEEE 2013, 17, 1084–1087. [Google Scholar] [CrossRef]
- Roselli, L.; Mariotti, C.; Mezzanotte, P.; Alimenti, F.; Orecchini, G.; Virili, M.; Carvalho, N.B. Review of the present technologies concurrently contributing to the implementation of the Internet of Things (IoT) paradigm: RFID, Green Electronics, WPT and Energy Harvesting. In Proceedings of the 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), San Diego, CA, USA, 25–28 January 2015; pp. 1–3. [Google Scholar]
- Garcia, R.; Gordon-Ross, A.; George, A.D. Exploiting Partially Reconfigurable FPGAs for Situation-Based Reconfiguration in Wireless Sensor Networks. In Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines, Napa, CA, USA, 5–7 April 2009; pp. 243–246. [Google Scholar]
- Liu, F.; Jia, Z.; Li, Y. A Novel Partial Dynamic Reconfiguration Image Sensor Node for Wireless Multimedia Sensor Networks. In Proceedings of the 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems, Liverpool, UK, 25–27 June 2012; pp. 1368–1374. [Google Scholar]
- Portilla, J.; Riesgo, T.; de Castro, A. A Reconfigurable Fpga-Based Architecture for Modular Nodes in Wireless Sensor Networks. In Proceedings of the 2007 3rd Southern Conference on Programmable Logic, Mar del Plata, Argentina, 28–26 February 2007; pp. 203–206. [Google Scholar]
- Valverde, J.; Otero, A.; Lopez, M.; Portilla, J.; De La Torre, E.; Riesgo, T. Using SRAM based FPGAs for power-aware high performance wireless sensor networks. Sensors 2012, 12, 2667–2692. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.; Salgado, F.; Pinto, S.; Cabral, J.; Tavares, A. A 6LoWPAN Accelerator for Internet of Things Endpoint Devices. IEEE Internet Things J. 2017, 5, 371–377. [Google Scholar] [CrossRef]
- Pham, D.M.; Aziz, S.M. Object extraction scheme and protocol for energy efficient image communication over wireless sensor networks. Comput. Netw. 2013, 57, 2949–2960. [Google Scholar] [CrossRef] [Green Version]
- Hayat, M.N.; Khan, H.; Iqbal, Z.; Rahman, Z.U.; Tahir, M. Multimedia sensor networks: Recent trends, research challenges and future directions. In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 157–162. [Google Scholar]
- Sales, F.O.; Marante, Y.; Vieira, A.B.; Silva, E.F. Energy Consumption Evaluation of a Routing Protocol for Low-Power and Lossy Networks in Mesh Scenarios for Precision Agriculture. Sensors 2020, 20, 3814. [Google Scholar] [CrossRef]
- García, G.J.; Jara, C.A.; Pomares, J.; Alabdo, A.; Poggi, L.M.; Torres, F. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing. Sensors 2014, 14, 6247–6278. [Google Scholar] [CrossRef] [Green Version]
- MEMSIC. MICAZ MPR2400CA Datasheet. Available online: http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf (accessed on 25 October 2020).
- MEMSIC. IRIS XM2110CA Datasheet. Available online: http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf (accessed on 25 October 2020).
- MEMSIC. TELOSB TPR2420CA Datasheet. Available online: https://www.willow.co.uk/TelosB_Datasheet.pdf (accessed on 25 October 2020).
- Goh, K.; Ong, S.H.; Joe, Y.Y.; Kusolpalin, P.; Moh, W.; Ling, K.V. FPGA based wireless sensor node for distributed process monitoring. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1934–1939. [Google Scholar]
- Pham, D.M.; Aziz, S.M. FPGA architecture for object extraction in Wireless Multimedia Sensor Network. In Proceedings of the 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, Australia, 6–9 December 2011; pp. 294–299. [Google Scholar]
- Pham, D.M.; Aziz, S.M. An energy efficient image compression scheme for Wireless Sensor Networks. In Proceedings of the 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, Australia, 2–5 April 2013; pp. 260–264. [Google Scholar]
- Digilent. Digilent Pmod Interface Specification. Available online: https://www.digilentinc.com/Pmods/Digilent-Pmod_%20Interface_Specification.pdf (accessed on 25 October 2020).
- Yang, F. Passive ultra-low energy building design based on FPGA and Internet of Things. Microprocess. Microsyst. 2020, 103412. [Google Scholar] [CrossRef]
- Vera-Salas, L.A.; Moreno-Tapia, S.V.; Garcia-Perez, A.; Romero-Troncoso, R.d.J.; Osornio-Rios, R.A.; Serroukh, I.; Cabal-Yepez, E. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer. Sensors 2011, 11, 7710–7723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otero, A.; Llinas, M.; Lombardo, M.L.; Portilla, J.; de la Torre, E.; Riesgo, T. Cost and energy efficient reconfigurable embedded platform using Spartan-6 FPGAs. In Proceedings of the SPIE 8067, VLSI Circuits and Systems V, Prague, Czech Republic, 3 May 2011. [Google Scholar] [CrossRef] [Green Version]
- Braeken, A.; Genoe, J.; Kubera, S.; Mentens, N.; Touhafi, A.; Verbauwhede, I.; Verbelen, Y.; Vliegen, J.; Wouters, K. Secure remote reconfiguration of an FPGA-based embedded system. In Proceedings of the 6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 20–22 June 2011; pp. 1–6. [Google Scholar]
- Bengherbia, B.; Ould Zmirli, M.; Toubal, A.; Guessoum, A. FPGA-based wireless sensor nodes for vibration monitoring system and fault diagnosis. Measurement 2017, 101, 81–92. [Google Scholar] [CrossRef]
- Hongzhi, L.; Bergmann, N.W. An FPGA softcore based implementation of a bird call recognition system for sensor networks. In Proceedings of the 2010 Conference on Design and Architectures for Signal and Image Processing (DASIP), Edinburgh, UK, 26–28 October 2010; pp. 1–6. [Google Scholar]
- Hinkelmann, H.; Reinhardt, A.; Varyani, S.; Glesner, M. A Reconfigurable Prototyping Platform for Smart Sensor Networks. In Proceedings of the 2008 4th Southern Conference on Programmable Logic, Bariloche, Argentina, 26–28 March 2008; pp. 125–130. [Google Scholar]
- Xilinx. Spartan 6 Product Brief. Available online: http://www.xilinx.com/publications/prod_mktg/Spartan6_Product_Brief.pdf (accessed on 25 October 2020).
- Xilinx. Spartan-6 Family Overview. Available online: http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf (accessed on 25 October 2020).
- Digilent. Sensors/Interfaces/Peripheral Modules (Pmods). Available online: http://store.digilentinc.com/pmod-modules/ (accessed on 20 November 2019).
- Future Technology Devices International Limited. FT2232D DUAL USB TO SERIAL UART/FIFO IC Datasheet. Available online: http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232D.pdf (accessed on 25 October 2020).
- Future Technology Devices International Limited. FT232H Single Channel Hi- Speed USB to Multipurpose UART/FIFO IC. Available online: http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232H.pdf (accessed on 15 December 2015).
- Digi International. XBee/XBee-PRO ZigBee RF Modules User Guide. Available online: http://ftp1.digi.com/support/documentation/90000976_W.pdf (accessed on 25 October 2020).
- Xilinx. Spartan-6 FPGA Configuration User Guide. Available online: http://www.xilinx.com/support/documentation/user_guides/ug380.pdf (accessed on 25 October 2020).
- Maupin, P. Playtag. Available online: https://code.google.com/p/playtag/ (accessed on 20 December 2020).
- Bonnes, U. xc3sprog (rev. 778). Available online: http://xc3sprog.sourceforge.net (accessed on 25 October 2020).
- AVNET. ZedBoard. Available online: http://zedboard.org/product/zedboard (accessed on 20 December 2019).
- Linaro. Linaro: Leading colaboration in the ARM ecosystem. Available online: http://www.linaro.org (accessed on 20 December 2015).
- Dropbox. Core API. Available online: https://www.dropbox.com/developers-v1/core (accessed on 20 December 2020).
Platform | Processor | Memory | Transceiver | Active Power (mW) | Active Power + RF (mW) | Price |
---|---|---|---|---|---|---|
MicaZ [21] | ATMega128L | 128 KB program memory, 4 KB SRAM | CC1000 | 43.2 | 71 | $92 |
IRIS [22] | ATmega1281 | 128 KB program memory, 8 KB SRAM | Atmel AT86RF230 | 28.8 | 61.2 | $29 |
TelosB [23] | MSP430 | 60 KB program memory, 2 KB SRAM | CC2420 | 6.5 | 83 | $79 |
Platform | Processor | Memory | Active Power | Price |
---|---|---|---|---|
Stargate | Intel PXA255 Processor | 64 MB SDRAM, 32 MB Flash | 600 mW | Unknown |
Arduino Yun | MIPS32 24K and ATmega32U4 | 64 MB SDRAM, 16 MB Flash | 1.4 W | $75 |
Beagle Bone Black | ARM Cortex-A8 | 512 MB SDRAM, 2 GB Flash | 2.2 W | $55 |
Intel Galileo | Intel X1000 | 256 MB SDRAM, 8 MB Flash | 3.5 W | $80 |
Raspberry Pi | ARM1176 | 256 MB SDRAM (Model B) | 2 W | $35 |
Platform | FPGA | Memory | Active Power | Price |
---|---|---|---|---|
[15] | Spartan 6 XC6SLX150-2 | 256 Mbits | 462 mW | Unknown |
[32] | Artix-7 FPGA: XC7A35T-1CPG236C | 1800 Kbits | 5 W | $149 |
[31] | Virtex 5 XC5VFX70T | Unknown | Unknown | Unknown |
[33] | Spartan-3E XC3S1600E | Unknown | 2.85 W | Unknown |
[34] | Spartan-3 XC3S2000 | Unknown | 1000 mW | Unknown |
Block | Power (mW) | Logic Power (mW) | Signal Power (mW) | # FFs | # LUTs |
---|---|---|---|---|---|
Control block | 0.19 | 0.08 | 0.11 | 14 | 22 |
uart_tx_module | 0.15 | 0.10 | 0.05 | 18 | 22 |
uart_rx_module | 0.13 | 0.08 | 0.06 | 18 | 22 |
uart_rate_control | 0.10 | 0.06 | 0.04 | 7 | 9 |
i2c_master | 0.77 | 0.42 | 0.34 | 39 | 68 |
Total | 1.35 | 0.74 | 0.61 | 96 | 143 |
Application | Programming Time | Total Power (mW) | Fmax | Resources | |
---|---|---|---|---|---|
# FFs | # LUTs | ||||
Temperature monitoring | iMPACT: 10 s XC3Sprog: 2331 ms | 1.35 | 292.483 MHz | 96 | 143 |
PWM Control | iMPACT: 10 s XC3Sprog: 2330 ms | 5.28 | 144.547 MHz | 296 | 568 |
Setup | Processing Power at 5 V Supply (mW) |
---|---|
Maximum | |
Temperature monitoring using SPI | 473.55 |
Temperature monitoring using I2C | 402.1 |
AC Switch control | 432.8 |
PWM fan control | 441.7 |
Image compression | 675.2 |
Combined image compression and object extraction | 713.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, D.M.; Aziz, S.M. FlexiS—A Flexible Sensor Node Platform for the Internet of Things. Sensors 2021, 21, 5154. https://doi.org/10.3390/s21155154
Pham DM, Aziz SM. FlexiS—A Flexible Sensor Node Platform for the Internet of Things. Sensors. 2021; 21(15):5154. https://doi.org/10.3390/s21155154
Chicago/Turabian StylePham, Duc Minh, and Syed Mahfuzul Aziz. 2021. "FlexiS—A Flexible Sensor Node Platform for the Internet of Things" Sensors 21, no. 15: 5154. https://doi.org/10.3390/s21155154
APA StylePham, D. M., & Aziz, S. M. (2021). FlexiS—A Flexible Sensor Node Platform for the Internet of Things. Sensors, 21(15), 5154. https://doi.org/10.3390/s21155154