A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors
Abstract
:1. Introduction
2. On-Chip CMOS P+/N-Well APD
3. Circuit Description
3.1. Feedforward TIA
3.2. Limiting Amplifier
4. Measured Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behroozpour, B.; Sandborn, P.A.M.; Wu, M.C.; Boser, B.E. Lidar system architectures and circuits. IEEE Commun. Mag. 2017, 55, 135–142. [Google Scholar] [CrossRef]
- Yoon, D.S.; Joo, J.E.; Park, S.M. Mirrored current-conveyor transimpedance amplifier for home minotoring LiDAR sensors. IEEE Sens. J. 2020, 21, 5589–5597. [Google Scholar] [CrossRef]
- Woodward, T.K.; Krishnamoorthy, A.V. 1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 146–156. [Google Scholar] [CrossRef]
- Lee, M.J.; Choi, W.Y. Performance comparison of two types of silicon avalanche photodetectors based on N-well/P-substrate and P+/N-well junctions fabricated with standard CMOS technology. J. Opt. Soc. Korea 2011, 15, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Choi, W.Y. Effects of parasitic resistance on the performance of silicon avalanche photodetectors in standard CMOS technology. IEEE Electron Device Lett. 2016, 37, 60–63. [Google Scholar] [CrossRef]
- Hong, C.-R.; Kim, S.H.; Kim, J.H.; Park, S.M. A linear-mode LiDAR sensor using a multi-channel CMOS transimpedance amplifier array. IEEE Sens. J. 2018, 18, 7032–7040. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits; McGraw-Hill: Boston, MA, USA, 2001. [Google Scholar]
- Han, J.-W.; Yoo, K.-S.; Lee, D.-M.; Park, K.-Y.; Oh, W.-S.; Park, S.-M. A low-power gigabit CMOS limiting amplifier using negtaive impedance compensation and its application. IEEE Trans. VLSI Syst. 2012, 20, 393–399. [Google Scholar] [CrossRef]
- Säckinger, E. Broadband Circuits for Optical Fiber Communication; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kim, S.G.; Hong, C.; Eo, Y.S.; Kim, J.; Park, S.M. A 40-GHz mirrored-cascode differential transimpedance amplifier in 65-nm CMOS. IEEE J. Solid-State Circuits 2019, 54, 1468–1474. [Google Scholar] [CrossRef]
- Baharmast, A.; Kurtti, S.; Kostamovaara, J. A wide dynamic range laser radar receiver based on input pulse-shaping techniques. IEEE Trans. Circuits Syst. I Reg. Pap. 2020, 67, 2566–2577. [Google Scholar] [CrossRef]
- Hintikka, M.; Kostamovarra, J. A 700 MHz laser radar receiver realized in 0.18 μm HV-CMOS. Analog Integr. Circuits Signal Process. 2017, 93, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.H.; Kim, C.H.; Kwon, Y.J.; Ko, J.S.; Kim, D.B.; Park, H.H. Wideband receiver for a three-dimensional ranging LADAR system. IEEE Trans. Circuits Syst. I Reg. Pap. 2013, 60, 448–456. [Google Scholar] [CrossRef]
- Wang, X.; Ma, R.; Li, D.; Zheng, H.; Liu, M.; Zhu, Z. A low walk error analog front-end circuit with intensity compensation for direct ToF LiDAR. IEEE Trans. Circuits Syst. I Reg. Pap. 2020, 67, 4309–4321. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, R.; Liu, M.; Zhu, Z. A linear-array receiver analog front-end circuit for rotating scanner LiDAR application. IEEE Sens. J. 2019, 19, 5053–5061. [Google Scholar] [CrossRef]
Parameters | This Work | [6] | [12] | [13] | [14] | [15] | |
---|---|---|---|---|---|---|---|
Technology (nm) | CMOS 180 | CMOS 180 | HV-CMOS 180 | CMOS 130 | CMOS 180 | CMOS 350 | |
PD | Type | APD (on-chip) | InGaAs PIN-PD (off-chip) | APD (off-chip) | APD (off-chip) | APD (off-chip) | APD (off-chip) |
Cpd (pF) | 0.5 * | 0.5 | 0.5 | 2 | 1.2 | 1.2 | |
Responsivity (A/W) | 2.72 | 0.9 | N/A | N/A | 50 | N/A | |
Wavelength (nm) | 850 | 1550 | N/A | N/A | 905 | N/A | |
TZ gain (dBΩ) | 93.4 | 76.3 | 88 | 78 | 86 | 100 | |
Bandwidth (MHz) | 790 | 720 | 700 | 640 | 281 | 450 | |
Noise current spectral density (pA/√Hz) | 12 | 6.3 | 17 | 4.7 | 4.68 | 2.59 | |
Power Dissipation (mW) | 56.5 | 29.8 | 180 | 114 | 200 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, J.-E.; Lee, M.-J.; Park, S.M. A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors. Sensors 2021, 21, 4364. https://doi.org/10.3390/s21134364
Joo J-E, Lee M-J, Park SM. A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors. Sensors. 2021; 21(13):4364. https://doi.org/10.3390/s21134364
Chicago/Turabian StyleJoo, Ji-Eun, Myung-Jae Lee, and Sung Min Park. 2021. "A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors" Sensors 21, no. 13: 4364. https://doi.org/10.3390/s21134364
APA StyleJoo, J.-E., Lee, M.-J., & Park, S. M. (2021). A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors. Sensors, 21(13), 4364. https://doi.org/10.3390/s21134364