Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control
Abstract
:1. Introduction
2. Related Work
3. Proportional-Integral Gating Control
3.1. Network State Space Model
3.2. PI Controller
4. DNB Traffic Signal Controller
4.1. DNB Solution for Two Players
4.2. DNB Solution for Multiple Players
5. Testing on a Grid Network
5.1. Experimental Setup
5.2. Experimental Results
5.3. Statistical Analysis
5.4. Summary
6. Conclusions and Recommendations for Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Elbakary, M.I.; Abdelghaffar, H.M.; Afrifa, K.; Rakha, H.A.; Cetin, M.; Iftekharuddin, K.M. Aerosol tracking using lidar based atmospheric profiling and Bayesian estimation. Opt. Laser Technol. 2020, 128, 106248. [Google Scholar] [CrossRef]
- Godfrey, J. The mechanism of a road network. Traffic Eng. Control 1969, 8, 323–327. [Google Scholar]
- Geroliminis, N.; Daganzo, C.F. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transp. Res. Part B Methodol. 2008, 42, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Geroliminis, N.; Sun, J. Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. Part B Methodol. 2011, 45, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Keyvan-Ekbatani, M.; Kouvelas, A.; Papamichail, I.; Papageorgiou, M. Exploiting the fundamental diagram of urban networks for feedback based gating. Transp. Res. Part B Methodol. 2012, 46, 1393–1403. [Google Scholar] [CrossRef]
- Abdelghaffar, H.M.; Yang, H.; Rakha, H.A. Developing a De-centralized Cycle-free Nash Bargaining Arterial Traffic Signal Controller. In Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, IEEE MT-ITS, Naples, Italy, 26–28 June 2017. [Google Scholar] [CrossRef]
- Abdelghaffar, H.M.; Rakha, H.A. Development and Testing of a Novel Game Theoretic De-Centralized Traffic Signal Controller. IEEE Trans. Intell. Transp. Syst. 2021, 22, 231–242. [Google Scholar] [CrossRef]
- Roess, R.; Prassas, E.S.; McShane, W.R. Traffic Engineering, 5th ed.; Pearson Education: Hoboken, NJ, USA, 2019. [Google Scholar]
- Elouni, M.; Rakha, H.A.; Bichiou, Y. Implementation and Investigation of a Weather- and Jam Density-Tuned Network Perimeter Controller. In Smart Cities, Green Technologies and Intelligent Transport Systems. SMARTGREENS 2018, VEHITS 2018. Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 992, pp. 266–278. [Google Scholar] [CrossRef]
- Rakha, H. Integration © Release 2.40 for Windows: User’s Guide—Volume I: Fundamental Model Features; Technical Report; Center Sustain. Mobility, Virginia Tech Transp. Inst.: Blacksburg, VA, USA, 2020. [Google Scholar] [CrossRef]
- Rakha, H.A. Integration © Release 2.40 for Windows: User’s Guide—Volume II: Advanced Model Features; Technical Report; Center Sustain. Mobility, Virginia Tech Transp. Inst.: Blacksburg, VA, USA, 2020. [Google Scholar] [CrossRef]
- Rakha, H.A.; Pasumarthy, P.; Adjerid, S. A Simplified Behavioral Vehicle Longitudinal Motion Model. Transp. Lett. Int. J. Transp. Res. 2009, 1, 95–110. [Google Scholar] [CrossRef]
- Rakha, H.A.; Snare, M.; Dion, F. Vehicle Dynamics Model for Estimating Maximum Light Duty Vehicle Acceleration Levels. Transp. Res. Rec. J. Transp. Res. Board 2004, 1883. [Google Scholar] [CrossRef]
- Dion, F.; Rakha, H.A.; Kang, Y.S. Comparison of Delay Estimates at Under-saturated and Over-saturated Pre-timed Signalized Intersections. Transp. Res. Part B Methodol. 2004, 38, 99–122. [Google Scholar] [CrossRef]
- Rakha, H.A.; Kang, Y.S.; Dion, F. Estimating Vehicle Stops at Under-Saturated and Over-Saturated Fixed-Time Signalized Intersections. Transp. Res. Rec. 2001, 1776, 128–137. [Google Scholar] [CrossRef]
- Rakha, H.A.; Zhang, Y. The integration 2.30 Framework for Modeling Lane-Changing Behavior in Weaving Sections. Transp. Res. Rec. J. Transp. Res. Board 2004, 1883. [Google Scholar] [CrossRef]
- Ahn, K.; Rakha, H.; Trani, A.; Aerde, M.V. Estimating Vehicle Fuel Consumption and Emissions based on Instantaneous Speed and Acceleration Levels. J. Transp. Eng. 2002, 128, 182–190. [Google Scholar] [CrossRef]
- French, L.J.; French, M.S. Benefits of Signal Timing Optimization and ITS to Corridor Operations; Technical Report; No. FHWA-PA-2006-007-040214-P1; French Engineering, LLC: Smithfield, PA, USA, 2006. [Google Scholar]
- Hunt, P.B.; Robertson, D.I.; Bretherton, R.D.; Winton, R.I. SCOOT-a Traffic Responsive Method of Coordinating Signals; Technical Report; No. LR 1014 Monograph; Transport and Road Research Laboratory: Wokingham, Berkshire, UK, 1981. [Google Scholar]
- Sims, A.G.; Dobinson, K.W. SCAT-The Sydney Co-ordinated Adaptive Traffic System Philosophy and Benefits. In Symposium on Computer Control of Transport; Preprints of Papers; Sims, A.G., Ed.; Institution of Engineers: Sydney, Australia, 1981. [Google Scholar]
- Gartner, N.H. OPAC: A demand-responsive strategy for traffic signal control. Transp. Res. Rec. J. Transp. Res. Board 1983, 906, 75–81. [Google Scholar]
- Mirchandani, P.; Head, L. A real-time traffic signal control system: Architecture, algorithms, and analysis. Transp. Res. Part C Emerg. Technol. 2001, 9, 415–432. [Google Scholar] [CrossRef]
- Wongpiromsarn, T.; Uthaicharoenpong, T.; Wang, Y.; Frazzoli, E.; Wang, D. Distributed traffic signal control for maximum network throughput. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 588–595. [Google Scholar]
- Gregoire, J.; Qian, X.; Frazzoli, E.; De La Fortelle, A.; Wongpiromsarn, T. Capacity-aware backpressure traffic signal control. IEEE Trans. Control Netw. Syst. 2014, 2, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, A.A.; Kulcsár, B.; Wymeersch, H. Back-pressure traffic signal control with fixed and adaptive routing for urban vehicular networks. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2134–2143. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Xiao, J.; Song, X.; Ma, X.; Jin, S. A back-pressure based model with fixed phase sequences for traffic signal optimization under oversaturated networks. IEEE Trans. Intell. Transp. Syst. 2020. [Google Scholar] [CrossRef]
- Le, T.; Kovács, P.; Walton, N.; Vu, H.L.; Andrew, L.L.; Hoogendoorn, S.S. Decentralized signal control for urban road networks. Transp. Res. Part C Emerg. Technol. 2015, 58, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Pappis, C.; Mamdani, E. A Fuzzy Logic Controller for a Traffic Junction Systems. IEEE Trans. Man Cybern. 1977, 7, 707–717. [Google Scholar] [CrossRef]
- Bingham, E. Neurofuzzy Traffic Signal Control; Helsinki University of Technology: Espoo, Finland, 1998. [Google Scholar]
- El-Tantawy, S.; Abdulhai, B.; Abdelgawad, H. Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): Methodology and large-scale application on downtown Toronto. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1140–1150. [Google Scholar] [CrossRef]
- Spall, J.; Chin, D. A model-free approach to optimal signal light timing for system-wide traffic control. In Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 14–16 December 1994; pp. 1868–1875. [Google Scholar]
- Srinivasan, D.; Choy, M.C.; Cheu, R.L. Neural Networks for Real-Time Traffic Signal Control. IEEE Trans. Intell. Transp. Syst. 2006, 7, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, H.; Bell, M.G.H. Traffic signal timing optimization based on genetic algorithm approach, including driver’s routing. Transp. Res. Part B 2004, 38, 329–342. [Google Scholar] [CrossRef]
- Chin, Y.; Yong, K.; Bolong, N.; Yang, S.; Teo, K. Multiple Intersections Traffic Signal Timing Optimization with Genetic Algorithm. In Proceedings of the IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 25–27 November 2011. [Google Scholar]
- Araghi, S.; Khosravi, A.; Creighton, D. A review on computational intelligence methods for controlling traffic signal timing. Expert Syst. Appl. 2015, 42, 1538–1550. [Google Scholar] [CrossRef]
- Liu, Z. A Survey of Intelligence Methods in Urban Traffic Signal Control. Int. J. Comput. Sci. Netw. Secur. 2007, 7, 105–112. [Google Scholar]
- Ullah, M.S.; Wyne, M.F.; Ahmed, J. Traffic responsive signal timing plan generation based on neural network. Int. J. Intell. Inf. Technol. (IJIIT) 2009, 5, 84–101. [Google Scholar]
- Abdulhai, B.; Pringle, R.; Karakoulas, G.J. Reinforcement learning for true adaptive traffic signal control. J. Transp. Eng. 2003, 129, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Salkham, A.; Cunningham, R.; Garg, A.; Cahill, V. A collaborative reinforcement learning approach to urban traffic control optimization. In Proceedings of the International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, NSW, Australia, 9–12 December 2008. [Google Scholar]
- Chen, C.; Wei, H.; Xu, N.; Zheng, G.; Yang, M.; Xiong, Y.; Xu, K.; Li, Z. Toward A thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3414–3421. [Google Scholar]
- Bazzan, A.L.C. A Distributed Approach for Coordination of Traffic Signal Agents. Auton. Agents Multi-Agent Syst. 2005, 10, 131–164. [Google Scholar] [CrossRef]
- Han, Z.; Niyato, D.; Saad, W.; Basar, T.; Hjorungnes, A. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Elouni, M.; Rakha, H. Weather-Tuned Network Perimeter Control-A Network Fundamental Diagram Feedback Controller Approach. In Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems VEHITS, Funchal, Madeira, Portugal, 16–18 March 2018; pp. 82–90. [Google Scholar]
- Haddad, J.; Shraiber, A. Robust perimeter control design for an urban region. Transp. Res. Part B Methodol. 2014, 68, 315–332. [Google Scholar] [CrossRef]
- Bichiou, Y.; Elouni, M.; Abdelghaffar, H.M.; Rakha, H.A. Sliding Mode Network Perimeter Control. IEEE Trans. Intell.Transp. Syst. 2020, 1–10. [Google Scholar] [CrossRef]
- Sirmatel, I.I.; Geroliminis, N. Economic model predictive control of large-scale urban road networks via perimeter control and regional route guidance. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1112–1121. [Google Scholar] [CrossRef]
- Kouvelas, A.; Saeedmanesh, M.; Geroliminis, N. A linear formulation for model predictive perimeter traffic control in cities. IFAC-PapersOnLine 2017, 50, 8543–8548. [Google Scholar] [CrossRef]
- Aboudolas, K.; Geroliminis, N. Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transp. Res. Part B Methodol. 2013, 55, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Keyvan-Ekbatani, M.; Papageorgiou, M.; Papamichail, I. Feedback Gating Based on Sparse-Measurement Urban Network Fundamental Diagrams. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Keyvan-Ekbatani, M.; Papageorgiou, M.; Knoop, V.L. Controller design for gating traffic control in presence of time-delay in urban road networks. Transp. Res. Procedia 2015, 7, 651–668. [Google Scholar] [CrossRef] [Green Version]
- Keyvan Ekbatani, M.; Gao, X.; Gayah, V.; Knoop, V.L. Combination of traffic-responsive and gating control in urban networks: Effective interactions. In Proceedings of the 95th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Keyvan-Ekbatani, M.; Gao, X.S.; Gayah, V.V.; Knoop, V.L. Traffic-responsive signals combined with perimeter control: Investigating the benefits. Transp. B Transp. Dyn. 2019, 7, 1402–1425. [Google Scholar] [CrossRef]
- Du, J.; Rakha, H.; Gayah, V.V. Deriving macroscopic fundamental diagrams from probe data: Issues and proposed solutions. Transp. Res. Part C Emerg. Technol. 2016, 66, 136–149. [Google Scholar] [CrossRef]
- Westphal, L.C. A special control law: Deadbeat control. In Handbook of Control Systems Engineering; Springer: Boston, MA, USA, 2001; pp. 461–471. [Google Scholar]
- Abdelghaffar, H.M.; Yang, H.; Rakha, H.A. Isolated traffic signal control using a game theoretic framework. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1496–1501. [Google Scholar] [CrossRef]
- Abdelghaffar, H.M.; Rakha, H.A. A novel decentralized game-theoretic adaptive traffic signal controller: Large-scale testing. Sensors 2019, 19, 2282. [Google Scholar] [CrossRef] [Green Version]
- Daganzo, C. Fundamentals of Transportation and Traffic Operations; Elsevier Science Publishing Company: New York, NY, USA, 1997. [Google Scholar]
- Calle-Laguna, A.J.; Du, J.; Rakha, H.A. Computing optimum traffic signal cycle length considering vehicle delay and fuel consumption. Transp. Res. Interdiscip. Perspect. 2019, 3, 100021. [Google Scholar] [CrossRef]
P2 | |||
---|---|---|---|
A1 | A2 | ||
P1 | A1 | ||
A2 |
Controller | FP | FPG | PS | PSG | PSC | PSCG | DNB | |
---|---|---|---|---|---|---|---|---|
MOE | ||||||||
Average Number of Stops | 5.244 | 4.987 | 5.094 | 4.918 | 5.028 | 4.877 | 4.134 | |
Improvement % | 21.16 | 17.10 | 18.85 | 15.94 | 17.78 | 15.23 | ||
Average Travel time (s) | 706.642 | 592.694 | 647.114 | 553.837 | 589.142 | 525.764 | 411.917 | |
Improvement % | 41.71 | 30.5 | 36.35 | 25.62 | 30.08 | 21.65 | ||
Average Total Delay (s/veh) | 280.335 | 222.699 | 259.410 | 210.037 | 255.413 | 221.227 | 124.298 | |
Improvement % | 55.66 | 44.19 | 52.08 | 40.82 | 51.33 | 43.81 | ||
Average Fuel (L) | 0.439 | 0.405 | 0.426 | 0.398 | 0.425 | 0.404 | 0.349 | |
Improvement % | 20.5 | 13.84 | 18.11 | 12.34 | 17.85 | 13.67 | ||
Average CO2 (grams) | 1008.209 | 930.148 | 979.152 | 914.559 | 976.064 | 928.839 | 798.699 | |
Improvement % | 20.78 | 14.13 | 18.43 | 12.67 | 18.17 | 14.01 |
Controller | Total Delay | Fuel | CO2 | |||
---|---|---|---|---|---|---|
Class | LSM | Class | LSM | Class | LSM | |
FP | A | 274.12 | A | 0.43 | A | 1000.43 |
PSC | A | 257.18 | A | 0.42 | A | 978.29 |
PS | A | 255.69 | A | 0.42 | A | 974.19 |
PSCG | B | 222.12 | B | 0.40 | B | 930.06 |
FPG | B | 222.06 | B | 0.40 | B | 929.09 |
PSG | B | 208.18 | B | 0.39 | B | 911.79 |
DNB | C | 124.62 | C | 0.34 | C | 799.07 |
Controller | Travel Time | |
---|---|---|
Class | LSM | |
FP | A | 697.68 |
PS | B | 641.05 |
FPG | C | 592.25 |
PSC | C | 592.13 |
PSG | D | 551.05 |
PSCG | D | 527.19 |
DNB | E | 412.30 |
Controller | Number of Stops | |
---|---|---|
Class | LSM | |
FP | A | 5.24 |
PS | B | 5.09 |
PSC | B C | 5.02 |
FPG | B C D | 4.98 |
PSG | C D | 4.91 |
PSCG | D | 4.87 |
DNB | E | 4.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elouni, M.; Abdelghaffar, H.M.; Rakha, H.A. Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control. Sensors 2021, 21, 274. https://doi.org/10.3390/s21010274
Elouni M, Abdelghaffar HM, Rakha HA. Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control. Sensors. 2021; 21(1):274. https://doi.org/10.3390/s21010274
Chicago/Turabian StyleElouni, Maha, Hossam M. Abdelghaffar, and Hesham A. Rakha. 2021. "Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control" Sensors 21, no. 1: 274. https://doi.org/10.3390/s21010274
APA StyleElouni, M., Abdelghaffar, H. M., & Rakha, H. A. (2021). Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control. Sensors, 21(1), 274. https://doi.org/10.3390/s21010274