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Abstract: This paper compares the operation of a decentralized Nash bargaining traffic signal con-
troller (DNB) to the operation of state-of-the-art adaptive and gating traffic signal control. Perimeter
control (gating), based on the network fundamental diagram (NFD), was applied on the borders
of a protected urban network (PN) to prevent and/or disperse traffic congestion. The operation
of gating control and local adaptive controllers was compared to the operation of the developed
DNB traffic signal controller. The controllers were implemented and their performance assessed on
a grid network in the INTEGRATION microscopic simulation software. The results show that the
DNB controller, although not designed to solve perimeter control problems, successfully prevents
congestion from building inside the PN and improves the performance of the entire network. Specif-
ically, the DNB controller outperforms both gating and non-gating controllers, with reductions in
the average travel time ranging between 21% and 41%, total delay ranging between 40% and 55%,
and emission levels/fuel consumption ranging between 12% and 20%. The results demonstrate
statistically significant benefits of using the developed DNB controller over other state-of-the-art
centralized and decentralized gating/adaptive traffic signal controllers.

Keywords: perimeter control; NFD; adaptive control; game theory; DNB

1. Introduction

Traffic growth within urban roadway systems, in combination with limited available
capacity, affects traveler mobility and air quality and impacts public health. Vehicles burn
fuel at a higher rate in congestion, releasing emissions that contribute to air pollution,
which is related to global warming [1]. These conditions can be improved by reducing
congestion. Traffic signal controllers are one means of reducing congestion if traffic signals
are adjusted properly, changing signal control variables such as phase sequences, cycle
lengths, phase splits, and offsets. These controls can introduce significant improvements in
traffic variables such as delays, travel times, and vehicle emissions.

One pertinent example of adaptive signal controllers for urban networks is perimeter
flow control, or gating. The idea behind gating is to limit the flow entering a protected
network (PN) in order to prevent congestion from occurring and dispersing congestion
after it occurs. This method is based on the NFD [2-4], which identifies the network density
at capacity (or set point) at which congestion starts to build up (Figure 1). The perimeter
controller will then try to maintain the network density around the density at capacity,
where the flow is maximal.
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Figure 1. Network fundamental diagram.

NEFD based perimeter controllers assume a well-defined NFD [5]. The congestion
inside the PN has to be homogeneous [3], meaning that the variance in network link
densities must be minimal. In real life, this is not always achievable, especially in congested
city centers where some links are very congested while others are not. Furthermore, the
identification of the location and the number of the border signals where the gating is
applied is crucial and could degrade the controller’s performance. Finally, gated links
should be long enough to hold the long queues formed as part of the gating control. A
previously developed decentralized Nash bargaining (DNB) controller [6,7] is an adaptive
game-theoretic controller that was proven to perform well on different networks. Applying
the DNB controller to resolve network congestion is advantageous since it does not require
the identification of an NFD and its associated challenges, and given that the system is
decentralized, it is scalable and thus easy to apply to large-scale networks.

In this paper, the developed DNB controller is compared to the operation of an opti-
mum fixed-time coordinated plan (FP), a centralized adaptive phase split controller (PS),
and a decentralized adaptive phase split and cycle length controller (PSC) [8]. Feedback
gating control (at the PN border traffic signals) is combined with local traffic signals (at all
other traffic signals inside and outside the PN). Perimeter control was applied to alleviate
the congestion whenever it occurs [5,9]. The performances of the combination of FP with
gating (FPG), PS with gating (PSG), and PSC with gating (PSCG) are compared to the
performances of the traffic signal controllers without gating (i.e., FP, PS, PSC) and to the
recently developed DNB traffic signal controller. To assess the controllers’ performance, a
replication of the grid network of downtown Washington, D.C., was modeled in the INTE-
GRATION microsimulator software [10,11]. The central area of the PN was homogeneously
congested, having a well-defined NFD.

These controllers were implemented and evaluated in the INTEGRATION software,
which uses the Rakha—-Pasumarthy—Adjerid car-following model to replicate the longitu-
dinal movement of vehicles [12]. Vehicle movement is constrained by a vehicle dynamic
model described in [13]. In [14], the model estimates of vehicle delay were validated,
whereas in [15], the vehicle stop estimates were described and validated. The lateral move-
ment of a vehicle is modeled using lane-changing models described in [16]. The VT-Micro
model [13,17] is used to estimate vehicle fuel consumption and emissions levels.

This paper is organized as follows. Section 2 describes the related work. Section 3
describes the mathematical model of the protected network and the design of the propor-
tional integral gating controller. The developed DNB controller is presented in Section 4.
Section 5 describes the experimental setup, the experimental results, and the statistical
analysis on a grid network. Section 6 presents the paper’s conclusions.
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2. Related Work

Traffic signal systems may be categorized as either fixed-time, actuated, or adaptive.
Timings in fixed-time control are computed offline using historical data. These timings are
fixed and do not adapt to real-time traffic conditions except in the case of traffic responsive
control where plans are introduced when traffic conditions warrant their introduction. Ac-
tuated controllers use data from detectors, located at traffic signal intersection stop lines, to
respond to changes in traffic demand. In adaptive controllers, timings are computed in real
time using real-time data obtained from cameras, loop detectors, or predictive models [18].
The split cycle offset optimization tool (SCOOT) [19], the Sydney coordinated adaptive
traffic system (SCATS) [20], optimization policies for adaptive control (OPAC) [21], and
RHODES [22] are examples of traditional adaptive traffic signal controllers. Both SCATS
and SCOQTS are centralized controllers, whereas OPAC and RHODES are distributed.

Back-pressure based methods are widely used as adaptive traffic signal controllers.
Wongpiromsarn et al. [23] were the first who adapted the back-pressure method from
routing in communication networks to traffic signal control. This method assigns green
time for different phases based on the back-pressure coefficient calculated as the difference
in traffic status between upstream and downstream links. A commonly used criterion is
the queue length of each approach. A standardized queue length based on link capacity
is also used [24]. Considering each lane group separately, a multi-commodity model for
back-pressure was demonstrated to perform better than the original method [25]. Back-
pressure methods may have an unordered phasing sequence where the phase having the
longer queue length is served first, or a fixed and ordered phase sequence like in [26,27] to
ensure accommodating all approaches.

Different adaptive traffic signal controllers are designed based on heuristic and intelli-
gent approaches, such as fuzzy sets [28,29], reinforcement learning [30], neural networks
(NN) [31,32], and genetic algorithms [33,34]. A detailed review of these methods can be
found in [35]. Intelligent approaches are useful when unexpected problems with traffic
conditions occur (like car accidents, inclement weather, etc). The genetic algorithm is
best used for simple and static problems, as it is computationally expensive in large-scale
networks. The same holds true for fuzzy controllers, which are suitable for isolated inter-
sections [36]. NN is used in S-TRAC (system-wide traffic adaptive controller) to generate
optimum instantaneous timings of the signal [31]. In [37], the NN used real time data as
the input and created different traffic time plans as the output. Most of the proposed NN
adaptive traffic signal controllers are distributed, meaning that traffic signal timings are
updated at a single intersection without consideration of its implication on other traffic
signals. NNs also do not adapt quickly to changes in traffic because of the continuous
online learning.

Reinforcement learning (RL) is a machine learning approach that allows agents to in-
teract with the environment, trying to learn the best behavior through interaction feedback.
Feedback may be available immediately after the event or several steps later, which makes
it more difficult to learn. A Q-learning method was applied by Abdulhai et al. [38] in a
two-dimensional road network to a simple isolated two phase traffic signal. Q-learning was
applied in [38,39], where each agent decides the phase split in simple networks. Coordina-
tion between agents was taken into consideration in El-Tantawy et al. [30]. Their approach
was tested on a network with 59 intersections, which is considered a small network [40].
More research is needed to test the effectiveness of intelligence based approaches on larger
more realistic networks composed of hundreds of traffic signals.

Interactive cooperation between intelligent agents is studied in game theory. Baz-
zan [41] applied game theory to traffic control, where each agent represents a traffic signal
having different signal plans defined a priori. This method works better when traffic is sta-
ble. The theory of bargaining is related to cooperative games via the Nash bargaining (NB)
concept where multiple players with different objectives reach a mutually agreeable solu-
tion [42]. We developed a traffic signal controller based on a decentralized NB (DNB) [6,7]
and showed that it is effective at improving network performance and reducing congestion.
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The operation of conventional adaptive controllers is limited by minimum and maximum
cycle lengths, green timings, and offsets and also requires a predefined phase sequence.
In addition, some systems use hierarchies that can partially or fully centralize decisions
and make them susceptible to failures. The proposed DNB controller is a decentralized
adaptive traffic signal controller, with a flexible phasing sequence and cycle-free operation,
using an NB game-theoretic framework.

Numerous real-time perimeter controllers have been developed based on control
theory, including: a standard proportional-integral (PI) controller [5,43], a robust PI
controller [44], a sliding mode controller [45], a model predictive controller (MPC) [46,47],
and a linear quadratic (LQ) controller [48]. The literature [5,49,50] shows that the PI perime-
ter controller is simple and efficient at reducing traffic congestion in an urban network. The
combination of perimeter control with traditional traffic responsive local controllers was
studied in [51,52], with the results indicating that the combination benefited the network
performance.

Controllers for the traffic signal can be classified as centralized or decentralized. De-
centralized systems have numerous advantages over centralized systems because they are
less computationally demanding, require only relevant information from adjacent intersec-
tions/controllers, are robust, scalable, economical to set up and operate, and do not require
a reliable direct network of communication among central computers and local controls. In
this paper, the operation of the developed DNB controller is compared to the operation of
the state-of-the-art decentralized, centralized, and gating traffic signal controllers.

3. Proportional-Integral Gating Control

This section describes the mathematical model of the PN (Section 3.1) and the design
of the PI gating controller (Section 3.2).

3.1. Network State Space Model

This section presents the mathematical model of the PN. The NFD shown in Figure 1
presents an aggregated relationship between the density (K) and the flow (Q) in a protected
(controlled) network. The objective is to control the vehicular input flow rate to the PN
(shown in Figure 2) to maintain the density inside the PN around a specific set-point (K)
(i.e., to ensure that the PN does not enter the congested regime). The rest of this section
derives the relation between the PN density and the input flow rate. It should be noted
that an earlier paper demonstrated how the NFD can be constructed from probe data and
the relationship between the network flow, Q, density, K, and space-mean speed, V [53].

Figure 2. Protected network (PN).

The nonlinear relationship between the PN flow (Q) and the density (K) shown in
Figure 1 is presented by Equation (1):

Q(t) = G(K(t)) 1)
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The NFD function (G(.)) is computed based on loop detector measurements of the
average network density (K) and the average network flow (Q) inside the PN. The average
network density K was computed using the following equation:

K(n) =Y K. (n).L./ ) L. )

z€Z z€Z

where z is a link indeX, Z is the set of measurement links, 7 is an index reflecting the time
step, L, is the length of link z, K, (1) is the measured density on link z during time step n,
and is calculated using Equation (3), where I; is the number of lanes on link z, k;_is the
jam density of z, and o, is the percentage of measured time-occupancy on link z during
time step n.

K:(n) = I;.kj,.0-(n)/100 ©)]

The flow (Q) inside the PN was calculated as shown in Equation (4), where Q. (n)
represents the measured flow on link z during time step n.

Q(n) =Y Q.(n).L./ Y L. 4)

ze€Z z€Z

The conservation equation for the vehicles inside the PN is shown in Equation (5),
where N represents the number of vehicles in the PN, g;, represents the PN input flow rate,
Gout represents the PN output flow rate, and g, represents the disturbance in the PN.

N/(t) = qin(t) + %l(t) - qout(t) (5)

Again, the objective is to control the input flow rate (g;,(#)) based on the PN density
(K(t)) to maintain the density at a specific set-point (K). Therefore, a relationship between
gin(t) and K(t) must be established. First, the relationship between N(t) and K(t) is shown.
Equation (6) shows the relationship between the measured density (K) from loop detectors
and the real density (K;), considering that the loop detectors may not be available in all PN
links. That is represented by a correction factor (R), where 0 < R < 1, and ¢; represents
the uncertainty (error) in the measured density.

Ki(t) = K(t)/R + &1 (t) (6)

The relationship between N and K; is shown in the following equation (Equation (7)),
where Lt represents the sum of links’ lengths in the PN.

@)

Hence, from Equations (6) and (7), the relationship between N and K can be deduced
(Equation (8)).
_ Lt

N(t) = STK(1) + Lyer (1) = “TK() + ea(t ®)

Then, the relationship between g, (t) and K(t) is shown based on the NFD. Equation (9)
shows the relationship between the measured (Q) and real (Q;) flow in the PN, considering
that the loop detectors may not be available in all the PN links. This is represented by a
correction factor (R), where 0 < R < 1, and €3 represents the uncertainty (error) in the
measured flow.

Qr(t) = Q(t)/R+e3(t) ©)

We assume that the exit flow rate (qout(t)) is proportional to the real PN flow Q,(t) through
Equation (10), where 0 < E <1 [5].

%ut(t) = EQr(t) (10)
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From Equations (1), (9), and (10), the relationship between oyt (t) and K(t) is shown in
Equation (11).
Gout (t) = E(G(K(t))/R + &5(t))
= EG(K(t))/R + Ee3(t) (11)
= EG(K(t))/R + e4(t)
Substituting Equations (8) and (11) into Equation (5) yields the relationship between the
rate of change in the density (K) in the PN and the input flow (g;,,), where e = —e4(¢)R/Lr.

% (LTK(t)/R + sZ(t)) = qin(t) + q4(t)

— (EG(K(1) /R +e4(1)) (12)

%K) = (300(6) + 94(0) ~ (GK()E/R)) R/ Ly +¢

The objective is to maintain the flow inside the PN at its maximum rate (i.e., the
density inside the PN at a specific steady state point (K)), and the controller is activated
only if K > 0.85K, to avoid congestion. Therefore, we can linearize the NFD (G(K(#)) in
Equation (12) at K, as shown in Equation (13), where at steady state, §;, + §4 = Gout, and

Jout = EQr(t) = E/RQ(f).

—  dG(t _ _ -
G(K(t)) = G(K) + # (K-K)= Q +GK (13)
—— K g O~
Q ——— K Jout-R/E
G/
Substituting Equation (13) into (12) yields:
d K(t)) = (qin(t) + g4(t) — (gin + ‘)—EG/K) R/Lt+ (14)
%( ) = (‘7171 qd Gin T 4d R ) Tt+E

Using the notation x = x — X, where ¥ is the steady state value, the linearized continuous
time state equation is shown in Equation (15).

d

T(K®) = (am(t) + aalt) ~ £CK) )R/Ly +¢ (15)

The continuous time state space equation for the PN is shown in Equation (16), where
w(t) = qq(t)R/Lr +¢, A= —EG'/Lr,and B = R/Lr.

K'(t) = AK(t) + Bqin(t) + w(t) (16)

The discrete state equation, assuming zero-order holds, is shown in Equation (17), where n
represents the time step, A; = e, T is the sampling time, and By = A~!(A; — 1)B.

K[n + 1] = A;K[n] + Biqin[n] + w(n] (17)

The two model parameters A; and B are calculated using a least-squares approximation
(Equation (18)) of the measured data (qin,,, Km) near K. Given that the error (¢) and the
disturbance (qq) are unknown and the model parameters A; and B; will be estimated
from the measured data, we can assume that the noise (w[n]) will be incorporated in the
least-squares approximation process and assume w|n| = 0.

I
. , . 2

min ) (Km[i + 1] — AgKm[i] — ByiQiny, [1]) (18)

AgiBai ;3
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The discrete PN transfer function between the output (K) and the input (qj,) is shown in
the following equation,
K B
PN(z) = X&) _ B
qin(z) zZ—= Ad

(19)

3.2. PI Controller

This section presents the design of the PI gating controller. The block diagram of the
controller is presented in Figure 3, where the objective is to control the input flow rate
(7in) to keep the PN density (K) at a specific set-point (K); the controller input flow (g;,) is
distributed among the gated links.

PI din | Protected K_>
Controller Network

Figure 3. PI controller block diagram.

The controller is activated as K reaches 0.85 K, or deactivated if K < 0.85 K. The
following equation shows the error signal:

e(t) = -K=K-K (20)

The PI controller equation is shown in Equation (21), where Kp is the proportional gain
and K; is the integral gain.

ot
Qin () = Kpe(t) + KI/O e(t)dt (21)
The discrete time equation of the controller is shown in the following equation:

Qin(7) = qin(n — 1) + Kp (e(n) —e(n— 1)> + Kje(n) (22)

The discrete controller transfer function between the output (qin) and the input (¢) is shown
in the following equation:

Qin(z) _ (Kp+Kp)z—Kp

C(z) = e(z) - z—1 @)

The overall closed loop transfer function of the block diagram shown in Figure 3 is shown
in the following equation:

C(z).PN(z)
I(z) = ——2 )
) = T ) PN G
o Kp
B (KP+KI)-W':L @4)
a Z*KI(ipx B
1+ (Kp+K;) — 2 Do

Pole-zero cancellation and deadbeat control are used for tuning the PI controller (i.e., the
assignment of Kp and K; values) [54]. Following the pole-zero cancellation process, where
the zero of the controller C (which is ﬁ) is set equal to the pole of the PN (whichis Ay),
a relationship between the controller gains and A, can be shown in the following equation:
Kp

Ag= ——P
; (Kp+Ki)

(25)
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substituting Equation (25) into Equation (24), the closed loop transfer function becomes:

B
1+ (Kp+Kp) 24 2= 14 (Kp+Kp)By

Applying the fastest possible deadbeat control design, where the response of the system
quickly reaches a zero error at the sampling instants, with c/(z) = %, a relationship between
the controller gains and B; can be shown in the following equation:

(KP+KI)-Bd =1 (27)

Solving Equations (25) and (27), the PI controller gains (Kp and Kj) in terms of the model
parameters (A; and Bg) are shown below:

A 1-A
_Aa g d

Kp —
P~ By B,

(28)

4. DNB Traffic Signal Controller

In this section, a description of the application of the NB for two players (for illustra-
tion purposes only) at a single intersection is presented followed by a description of the
decentralization of the controller over a network of traffic signals.

4.1. DNB Solution for Two Players

The bargaining problem is based on three basic elements: players, actions, and utilities
(or rewards) [55,56]. The players in a bargaining situation cooperate and benefit by finding
a mutual agreement. Bargaining between two players is presented in Table 1. The players
in this study are traffic signal phases. Each player (phase), namely P; and P;, has two
possible actions A; (maintain) and A, (change). Maintain means that the signal state will
stay the same (i.e., if it is green, it will stay green; if it is red, it will stay red). Change
indicates that the signal state will change (i.e., if it is green, it will switch to yellow and
then red; if it is red, it will become green) during the simulated time interval. The rewards
of each player are u and v, respectively, as they take relevant actions. The utility function
in this study is represented by the vehicles” queue length at the traffic signal stop bar.

Table 1. Two player matrix game.

P,
Aq Ar
P, Aq up, Vi up, Vo
A; uz, V3 Uy, Vg

The space (S; Figure 4) is the set of all possible rewards for the two players. The
disagreement point d = (dj, dy) is the minimum utilities that the players want to achieve
(i.e., maximum queue length). This point is a benchmark selected based on the fact that
each player wants to maximize his/her benefit. Subsequently, a bargaining problem is
defined as the pair (S,d) where S € R? and d € S such that S is a convex and compact set,
and there exists some s € S such thats > d [7].
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V

u
Figure 4. Utility region.

Nash’s theorem proved the existence and uniqueness of the bargaining problem
solution based on four axioms (Pareto efficiency, symmetry, invariance to equivalent utility
representation, and independence of irrelevant alternatives). This solution is the pair of
utilities (u*, v*) that solves the optimization problem presented in Equation (29):

max (u—dp)(v—dp)
uy (29)
sit.(u,v) €S, (u,v) > (dy,dp)

The NB solution (u*, v*) maximizes the product of the players’ rewards relative to a fixed
disagreement point.

4.2. DNB Solution for Multiple Players

This section describes the decentralized mechanism of the DNB controller for multiple
players, more details of which were provided in [56]. In order to achieve maximum network
performance, there is no intersection that needs to sacrifice its own performance. Each
intersection will maximize its own performance individually. To calculate the reward
function, which is the estimated sum of the queue lengths in each phase, vehicle speeds in
each approach are needed. These are provided from the INTEGRATION microsimulator.
In the simulations, if at time (t), the vehicle (v) speed (s!,) is less than the threshold speed
(s™=4.5 (km/h)), the vehicle is assigned to the queue, and the current queue length @)
associated with the lane () is updated. If the vehicle speed exceeds (s™), the queue length
is shortened by the number of vehicles leaving the queue. The mathematical equations for
calculating the queue length in each lane are presented in Equations (30) and (31).

a=3 4 (30)

vev!

1 ifsh > sTh & st < sTh

g = —1 ifsh 1 <sTh & sl > sTh 31)
v 0 if st71 < sTh & st < sTh
if s£71 > sTh & f, > sTh

After applying a certain action, the estimated queue length is calculated using Equation (32):

Qp(t+At) =Y q) + QiuAt — Qouut (32)
leP

where At is the update time interval, g/ is the length of the current queue at time ¢, the
estimated queue length for phase P after At is Qp(t + At), the flow rate of arrival is Q;,,
and the flow rate of departure is Q1. Qo1 are measured at the downstream end of the
links, and Q;,; are measured at distances from the downstream end of the links equal to
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threat points over jam densities. The flows Q;,; and Q,,;; can be measured using loop
detectors or CCTV cameras.

The DNB solution can be computed as the vector that maximizes the product of the
fixed threat point (d) relative to the player’s utility gains (Qp), to reduce and equalize the
queue lengths through the various phases. The threat point is the maximum queue length
that each phase can accommodate (i.e., the maximum measurable length of the queue).
The objective is to reduce the queue lengths across the different phases (N). The objective
function can therefore be written accordingly:

N
max d; — Qp;
(Qp1QpN) Q Qr) (33)

s.t.(Qp1, -, QpN) €S, (Qp1, .-, Qpn) < (dy, ..., dn)

5. Testing on a Grid Network

This section presents the experimental setup, the experimental results, the statistical
analysis of applying the proposed controllers on a grid network, and the summary findings.

5.1. Experimental Setup

The test-bed network used in this study was modeled using INTEGRATION micro-
scopic traffic simulation software. It is composed of 36 signalized intersections. The PN in
Figure 5 is surrounded by the blue square, and the gates for this network are identified
with the black arrows. The PN had 48 unidirectional links, where each link was 150 m.
In simulations, seven different traffic signal controllers (FP, PS, PSC, FPG, PSG, PSCG,
DNB) were implemented and tested in the grid network. FP is a coordinated optimized
fixed-time plan designed for relatively stable flows where the order and the duration of
all phases remain fixed and do not adapt to traffic changes. PS is an adaptive centralized
phase split controller that operates within a fixed cycle length. A common cycle length
ensures the best traffic progression. PSC is a decentralized adaptive phase split and cy-
cle length controller that dynamically optimizes phase splits and cycle lengths, without
considering the coordination of the traffic signals. The advantage of such systems is that
every traffic signal operates at its optimum traffic signal timings. Gating (G) is a feedback
perimeter controller that is applied at the PN boundary traffic signals to prevent and/or
delay the onset of traffic congestion. DNB is a decentralized traffic control system, which
operates a flexible phasing sequence and free cycle length, through a Nash bargaining
game-theoretic framework, to accommodate dynamic traffic demand changes. Decentral-
ized systems are computationally less demanding, since only relevant information from
the surrounding intersections/controllers is needed and maintained. In decentralized
control systems’ robustness is guaranteed. The FP signal timings were optimized using the
Webster method [57]. PS was optimized every 60 s, and PSC was optimized every 240 s.
The minimum and maximum cycle lengths were 40 s and 120 s, respectively. Recent work
showed that the Webster method overestimates the cycle length when the critical volume
to capacity ratio exceeds 0.75 and proposed new procedures for estimating the optimum
cycle length [58]. Future work will investigate the use of the modified formulae on the
system’s performance.
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Figure 5. Protected network.

To investigate the benefits obtained by using the developed DNB controller, we
compared its operation with the operation of the gating controllers (i.e., FPG, PSG, and
PSCG) and also to the operation of non-gating controllers (i.e., FP, PS, PSC). The operation
of the feedback based gating control at the PN borders (i.e., FPG, PSG, and PSCG) was
based on the NFD of the PN. The PN was congested when the average network density
exceeded 48 (veh/km) (i.e., K; the density that corresponds to the maximum flow). Hence,
gating controllers were activated at 0.85 K to avoid congestion. A; and B, were calibrated
based on Equation (18). Subsequently, the Kp and K; parameters were calculated using
Equation (28). {;, is the steady state value of g;, when K is around K. The optimized
parameters for the gating simulations were as follows: K = 48 veh/km, 7;;, = 4340 veh/h,
A; =0.782, B; = 0.00124, Kp = 631, K; = 176. For the DNB controller, the disagreement
point was chosen as the number of vehicles that could be accommodated over a distance
equal to half the link length. This ensures that queues do not spill back to the upstream
intersections. The DNB update interval of 10s was selected based on a sensitivity analysis
of different update intervals.

5.2. Experimental Results

NFD curves show the controllers” performance inside the PN, whereas the perfor-
mance for the entire network (inside and outside the PN) was assessed using different
measures of effectiveness (MOEs). More precisely, the average MOEs considering 20 differ-
ent random seed simulations of each of the following was calculated: number of vehicle
stops, travel time, total delay, vehicle fuel consumption, and vehicle emission levels (CO,).

Figure 6 shows the NFD curves of the DNB controller along with all other controllers
used in this study: FP, FPG, PS, PSG, PSC, PSCG. The results indicate that, applying the
DNB controller, the PN never reached the congested regime (Figure 6d). Figure 6a—c
shows that the gating controllers outperform non-gating controllers (the decreasing part
of the NFD is eliminated by gating). Comparing the performance of the DNB controller
with gating controllers (Figure 6e) shows that the DNB controller outperformed gating
controllers with a higher flow ratio. Figure 6f compares the DNB with all other gating and
non-gating controllers. It is clear from the figure that the DNB did not exceed the density at
capacity (which was K = 48 veh/km in this study), and also, the DNB produced a higher
vehicle throughput.

To better evaluate the performance of the developed DNB controller over other
(gating /non-gating) controllers, the average and standard deviations of each of the MOEs
for the entire network (not only the PN) were calculated as shown in Figure 7. The re-
sults in Figure 7 show that the gating controllers (FPG, PSG, PSCG) outperformed the
non-gating controllers (FP, PS, PSC). In addition, the figure shows that the DNB controller
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outperformed all the controllers with a significant reduction in both average values and
standard deviations.

In addition, to further investigate the obtained improvements using the DNB controller,
Table 2 shows the percentage improvements over the entire network using the DNB
controller compared to other control strategies. The results show a significant reduction
using the DNB controller over other controllers in average travel time from 21% to 41%, in
total delay from 40% to 55%, and in CO, emission and fuel consumption levels from 12%
to 20%.
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Figure 6. Average protected network fundamental diagram for 20 seeds: (a) fixed-time coordinated
plan (FP) vs. FP with gating (FPG), (b) phase split controller (PS) vs. PSG, (c) phase split and cycle
length controller (PSC) vs. PSCG, (d) DNB, (e) FPG vs. PSG vs. PSCG vs. DNB, and (f) all.
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Figure 7. Average measures of effectiveness (MOEs) and standard deviations of 20 simulations
at different seeds for the entire network: (a) average number of stops, (b) average travel time, (c)
average total delay, (d) average fuel, and (e) average CO;.

Table 2. Average MOEs and the percent improvement using the DNB controller over the other
controllers for the entire network.

Controller

MOE FP FPG PS PSG PSC PSCG DNB
Average Number of Stops 5244 4987 5094 4918 5028 4.877 4134
Improvement % 21.16 17.10 1885 1594 17.78 15.23

Average Travel time (s) 706.642 592.694 647.114 553.837 589.142 525.764 411.917
Improvement % 41.71 305 3635 25.62 30.08 21.65

Average Total Delay (s/veh) 280.335 222.699 259.410 210.037 255.413 221.227 124.298
Improvement % 55.66  44.19 52.08 40.82 51.33 43.81

Average Fuel (L) 0439 0405 0426 0398 0425 0404 0.349
Improvement % 20.5 13.84 18.11 1234 17.85 13.67

Average CO; (grams) 1008.209 930.148 979.152 914.559 976.064 928.839 798.699

Improvement % 20.78 1413 1843 12,67 18.17 14.01

In summary, the results demonstrate that the addition of gating to state-of-the-art
traffic signal controllers improves their performance, that the developed DNB controller
does not need the assistance of a gating controller, and in fact, outperforms both (gating
and non-gating) traffic signal controllers.
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5.3. Statistical Analysis

To investigate the statistical significance of the findings, an analysis of variance
(ANOVA) test was applied on all MOEs using the JMP software. The results showed
that at least one controller had a statistically significant different mean. In addition, the
Tukey test was applied to compare each controller to all other controllers. Tables 3-5 show
the least squares mean (LSM) Tukey reports for the MOEs using the JMP software, where
controllers not connected by the same letter were significantly different.

Table 3. Tukey test for total delay, fuel, and CO;.

Controller Total Delay Fuel CO,
Class LSM Class LSM Class LSM
FP A 27412 A 0.43 A 1000.43
PSC A 257.18 A 0.42 A 978.29
PS A 255.69 A 0.42 A 974.19
PSCG B 222.12 B 0.40 B 930.06
FPG B 222.06 B 0.40 B 929.09
PSG B 208.18 B 0.39 B 911.79
DNB C 124.62 C 0.34 C 799.07

Table 4. Tukey test for travel time.

Travel Time
Controller Class LSM
FP A 697.68
PS 641.05
FPG 592.25
PSC 592.13
PSG D 551.05
PSCG D 527.19
DNB E 412.30
Table 5. Tukey test for number of stops.
Number of Stops
Controller Class LSM
FP A 5.24
PS B 5.09
PSC B C 5.02
FPG BCD 498
PSG CD 491
PSCG D 4.87
DNB E 413

The Tukey test indicated that gating controllers (FPG, PSG, PSCG) were statistically
different from non-gating controllers (FP, PS, PSC), respectively, and that the DNB controller
was statistically significantly different in all MOEs compared to all other gating and non-
gating traffic signal controllers.

5.4. Summary

In this section, the performance of the developed DNB controller is compared to state-
of-the-art (FP, PS, PSC) and state-of-the-art gating /adaptive proportional-integral feedback
(FPG, PSG, PSCQG) traffic signal controllers. The proposed controllers’ performance was
assessed using the INTEGRATION microscopic traffic assignment and simulation software.
A total of 20 random seed simulations were conducted for each control strategy (FP, FPG,
PS, PSG, PSC, PSCG, DNB). The NFDs of a PN for the different control strategies were
investigated. The results showed that the DNB controller was able to prevent the formation
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of traffic congestion altogether. Comparing the performance of the DNB controller with
other controllers revealed that the DNB controller outperformed the gating/adaptive and
non-gating controllers. To better evaluate the DNB performance over other gating /non-
gating controllers for the entire network (inside and outside the PN), the average and the
standard deviations of each of the following measures of effectiveness (MOEs) were calcu-
lated: number of vehicle stops, vehicle travel time, total delay, vehicle fuel consumption,
and vehicle emission levels. Results showed that gating controllers (FPG, PSG, PSCG)
outperformed non-gating controllers (FP, PS, PSC) and that the DNB controller significantly
reduced the average values and the standard deviations of all MOEs. The results showed
that using the DNB controller versus other controllers led to significant reductions in aver-
age travel time from 21% to 41%, in total delay from 40% to 55%, and in emission levels
(CO») and fuel consumption from 12% to 20%. Analysis of variance and Tukey tests were
conducted on all MOEs using JMP software. The DNB controller produced statistically
significant improvements over other control strategies (gating and non-gating).

6. Conclusions and Recommendations for Further Work

In this paper, the performance of a developed decentralized traffic signal controller,
which considers a flexible phasing sequence and free cycle length, based on a Nash bargain-
ing game-theoretic framework (DNB) was compared to state-of-the-art adaptive and gating
traffic signal control strategies, namely a centralized optimum fixed-time coordinated plan
(FP), a centralized adaptive phase split controller (PS), and a decentralized adaptive phase
split and cycle length controller (PSC). These controllers were combined with a state-of-
the-art centralized gating proportional-integral feedback controller based on the network
fundamental diagram (NFD). The gating was implemented at the PN border signals to
limit vehicle entries to avoid or delay the onset of traffic congestion. The performances of
the gating controllers (FPG, PSG, PSCG) and the non-gating controllers (FP, PS, PSC) were
compared to the performance of the developed DNB traffic signal controller. The results
show that the DNB controller is able to prevent the formation of traffic congestion and thus
outperforms all other control strategies.

In addition to being less efficient than DNB, the gating control has other disadvantages.
Gating control regulates the flow of traffic through the manipulation of the red indications
at traffic signals upstream of a congested region, and the duration of gating depends on
real-time measurements from the protected region. This may result in long queues and
delays on the gated links. Gating at the border of a network may not be applicable if there is
insufficient space to store the gated vehicles (queuing) or if there is an insufficient number
of signalized intersections to gate the traffic. The network homogeneity condition should
hold when using the NFD to derive control strategies. Gating control is centralized, where a
central controller manages the input flow rate at the protected network gates. Alternatively,
the DNB controller is decentralized, thus increasing the system’s scalability and stability,
avoiding complex, centralized communication problems. Decentralized systems are usually
economical to install and operate, as a reliable and direct communication network among
the central computer and local controllers is not required.

In summary, the results revealed that gating controllers produce benefits for the state-
of-the-art traffic control systems and that the developed DNB controller outperforms gating
and non-gating traffic signal controllers. The results demonstrate the significant potential
benefits of using the developed DNB controller over other state-of-the-art centralized and
decentralized gating/adaptive traffic signal controllers.

For future work, the performance of the DNB controllers considering different levels of
information (e.g., different levels of connected vehicle market penetration) and data noise
should be investigated. Furthermore, further testing could consider the communication
system and its impact on the performance of the various traffic signal control systems.
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