Collision Prevention for Duty-Cycle Receiver-Initiation MAC Protocol via Multiple Access Reservation (MAR-RiMAC)
Abstract
:1. Introduction
- We devise MAR-RiMAC, an RI-MAC protocol amendment to address the collision storm problem. Our amendment is a reservation-based mechanism that allows the devices to send their reservations concurrently. Based on the received reservations, the sink pools the backlogged devices consecutively.
- We suggest two mechanisms to support the concurrent reservation transmission—one that is based on correlatable symbol sequences, and the other is based on energy detection.
- In the case that the number of concurrently transmitting devices exceeds the maximal supported concurrent transmissions, we utilize a collision resolution mechanism that distributively partitions the colliding groups into smaller subgroups, which can be supported by the concurrent reservation transmission mechanism.
- We implement both MAR-RiMAC and RI-MAC on the OMNeT++ simulator, and rigorously examine and compare the performance of both protocols under various traffic loads and topologies. We show that the suggested amendment improves performance in the case of high contention and especially in the presence of hidden nodes, yet preserves similar performance in light-traffic scenarios.
2. Related Work
3. Multiple-Access Reservation Receiver Initiation MAC (MAR-RiMAC)
3.1. RI-MAC Overview
3.2. Multiple-Access Transmission Reservation Enhancement—MAR-RiMAC
3.3. “Request to Transmit” (RtT) Signaling
Correlatable Symbol Sequences (CSSs)
3.4. Collision Resolution
3.5. Robustness to Noise
3.6. Multi-Hop Topologies
4. Performance Evaluation
4.1. Simulation Setup
4.2. Clique Topology
4.3. Hidden-Terminal Topology
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Javed, F.; Afzal, M.K.; Sharif, M.; Kim, B.S. Internet of Things (IoT) operating systems support, networking technologies, applications, and challenges: A comparative review. IEEE Commun. Surv. Tutor. 2018, 20, 2062–2100. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Shah, S.H.; Yaqoob, I. A survey: Internet of Things (IOT) technologies, applications and challenges. In Proceedings of the IEEE Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 21–24 August 2016; pp. 381–385. [Google Scholar]
- Carrano, R.C.; Passos, D.; Magalhaes, L.C.; Albuquerque, C.V. Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Commun. Surv. Tutor. 2013, 16, 181–194. [Google Scholar] [CrossRef]
- Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.W.; Xi, N. The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2012, 15, 101–120. [Google Scholar] [CrossRef]
- Kumar, A.; Zhao, M.; Wong, K.J.; Guan, Y.L.; Chong, P.H.J. A comprehensive study of iot and wsn mac protocols: Research issues, challenges and opportunities. IEEE Access 2018, 6, 76228–76262. [Google Scholar] [CrossRef]
- Djiroun, F.Z.; Djenouri, D. MAC protocols with wake-up radio for wireless sensor networks: A review. IEEE Commun. Surv. Tutor. 2016, 19, 587–618. [Google Scholar] [CrossRef]
- Ghose, D.; Li, F.Y.; Pla, V. MAC protocols for wake-up radio: Principles, modeling and performance analysis. IEEE Trans. Ind. Inform. 2018, 14, 2294–2306. [Google Scholar] [CrossRef]
- Sun, Y.; Gurewitz, O.; Johnson, D.B. RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In Proceedings of the 6th ACM conference on Embedded Network Sensor Systems (SenSys), Raleigh, NC, USA, 5–7 November 2008; pp. 1–14. [Google Scholar]
- Karakus, C.; Gurbuz, A.C.; Tavli, B. Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sens. J. 2013, 13, 1999–2008. [Google Scholar] [CrossRef]
- Wang, J.; Tang, S.; Yin, B.; Li, X.Y. Data gathering in wireless sensor networks through intelligent compressive sensing. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Orlando, FL, USA, 25–30 March 2012; pp. 603–611. [Google Scholar]
- Razzaque, M.A.; Dobson, S. Energy-efficient sensing in wireless sensor networks using compressed sensing. Sensors 2014, 14, 2822–2859. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Zhu, Y.; Kong, L.; Liu, C.; Gu, Y.; Vasilakos, A.V.; Wu, M.Y. CDC: Compressive data collection for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 2188–2197. [Google Scholar] [CrossRef]
- Middya, R.; Chakravarty, N.; Naskar, M.K. Compressive sensing in wireless sensor networks–a survey. IETE Tech. Rev. 2017, 34, 642–654. [Google Scholar] [CrossRef]
- Kumar, G.; Baskaran, K.; Blessing, R.E.; Lydia, M. A comprehensive review on the impact of compressed sensing in wireless sensor networks. Int. J. Smart Sens. Intell. Syst. 2016, 9. [Google Scholar]
- Razzaque, M.A.; Bleakley, C.; Dobson, S. Compression in wireless sensor networks: A survey and comparative evaluation. ACM Trans. Sens. Netw. (TOSN) 2013, 10, 1–44. [Google Scholar] [CrossRef]
- Infanteena, S.D.; Anita, E.M. Survey on compressive data collection techniques for wireless sensor networks. In Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 23–24 February 2017; pp. 1–4. [Google Scholar]
- Homaei, M.H.; Salwana, E.; Shamshirband, S. An enhanced distributed data aggregation method in the Internet of Things. Sensors 2019, 19, 3173. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Park, S.; Yu, F.; Kim, S.H. Data gathering mechanism with local sink in geographic routing for wireless sensor networks. IEEE Trans. Consum. Electron. 2010, 56, 1433–1441. [Google Scholar] [CrossRef]
- Hong, S.H.; Kim, B.K. An efficient data gathering routing protocol in sensor networks using the integrated gateway node. IEEE Trans. Consum. Electron. 2010, 56, 627–632. [Google Scholar] [CrossRef]
- Lotf, J.J.; Hosseinzadeh, M.; Alguliev, R.M. Hierarchical routing in wireless sensor networks: A survey. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; Volume 3, p. V3-650. [Google Scholar]
- Sennan, S.; Balasubramaniyam, S.; Luhach, A.K.; Ramasubbareddy, S.; Chilamkurti, N.; Nam, Y. Energy and Delay Aware Data Aggregation in Routing Protocol for Internet of Things. Sensors 2019, 19, 5486. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Liu, W.; Liu, X.; Liu, A.; Wang, T.; Xiong, N.N.; Cai, Z. Minimizing delay and transmission times with long lifetime in code dissemination scheme for high loss ratio and low duty cycle wireless sensor networks. Sensors 2018, 18, 3516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tao, L.; Yan, F.; Sung, D.K. Shortest-latency opportunistic routing in asynchronous wireless sensor networks with independent duty-cycling. IEEE Trans. Mob. Comput. 2019, 19, 711–723. [Google Scholar] [CrossRef]
- Xu, X.; Ansari, R.; Khokhar, A.; Vasilakos, A.V. Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Trans. Sens. Netw. (TOSN) 2015, 11, 1–25. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, D.; Yang, P.; Zhang, Z. An energy-efficient compressive sensing-based clustering routing protocol for WSNs. IEEE Sens. J. 2019, 19, 3950–3960. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Cao, Q.; Vasilakos, A.V. EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Trans. Netw. 2014, 23, 810–823. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, T.; Zhang, J.; Dong, Y.; Zhang, X. A kind of effective data aggregating method based on compressive sensing for wireless sensor network. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, S.; Jain, S. Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wirel. Pers. Commun. 2017, 97, 3355–3425. [Google Scholar] [CrossRef]
- Cheng, S.; Cai, Z.; Li, J. Approximate sensory data collection: A survey. Sensors 2017, 17, 564. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Luo, J.; Liu, Y.; Vasilakos, A.V. Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Commun. Mag. 2013, 51, 107–113. [Google Scholar] [CrossRef]
- Ye, W.; Heidemann, J.; Estrin, D. An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), New York, NY, USA, 23–27 June 2002; Volume 3, pp. 1567–1576. [Google Scholar]
- Van Dam, T.; Langendoen, K. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, CA, USA, 5–7 November 2003; pp. 171–180. [Google Scholar]
- Sun, Y.; Du, S.; Gurewitz, O.; Johnson, D.B. DW-MAC: A low latency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. In Proceedings of the 9th ACM International Symposium on Mobile ad Hoc Networking and Computing (MobiHoc), Hong Kong, China, 26–30 May 2008; pp. 53–62. [Google Scholar]
- Polastre, J.; Hill, J.; Culler, D. Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys), Baltimore, MD, USA, 3–5 November 2004; pp. 95–107. [Google Scholar]
- Buettner, M.; Yee, G.V.; Anderson, E.; Han, R. X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys), Boulder, CO, USA, 31 October–3 November 2006; pp. 307–320. [Google Scholar]
- Siddiqui, S.; Ghani, S.; Khan, A.A. ADP-MAC: An adaptive and dynamic polling-based MAC protocol for wireless sensor networks. IEEE Sens. J. 2017, 18, 860–874. [Google Scholar] [CrossRef]
- Wymore, M.L.; Qiao, D. RIVER-MAC: A Receiver-Initiated Asynchronously Duty-Cycled MAC Protocol for the Internet of Things. In Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA, 15–19 July 2019; Volume 1, pp. 860–869. [Google Scholar]
- Zhang, D.; Zhou, S.; Tang, Y. A low duty cycle efficient MAC protocol based on self-adaption and predictive strategy. Mob. Netw. Appl. 2018, 23, 828–839. [Google Scholar] [CrossRef]
- Khalil, M.I.; Hossain, M.A.; Ahmed, I. DURI-MAC: A dual channel receiver initiated MAC protocol for wireless sensor network (WSN). In Proceedings of the International conference on electrical, computer and communication engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 577–582. [Google Scholar]
- Dutta, P.; Dawson-Haggerty, S.; Chen, Y.; Liang, C.J.M.; Terzis, A. A-MAC: A versatile and efficient receiver-initiated link layer for low-power wireless. ACM Trans. Sens. Netw. (TOSN) 2012, 8, 1–29. [Google Scholar] [CrossRef]
- Tang, L.; Sun, Y.; Gurewitz, O.; Johnson, D.B. EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Paris, France, 16–20 May 2011; pp. 1–11. [Google Scholar]
- Tang, L.; Sun, Y.; Gurewitz, O.; Johnson, D.B. PW-MAC: An energy-efficient predictive-wakeup MAC protocol for wireless sensor networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Shanghai, China, 10–15 April 2011; pp. 1305–1313. [Google Scholar]
- Shi, J.; Salonidis, T.; Knightly, E.W. Starvation mitigation through multi-channel coordination in CSMA multi-hop wireless networks. In Proceedings of the 7th ACM International Symposium on Mobile ad Hoc Networking and Computing, Florence, Italy, 22–25 May 2006; pp. 214–225. [Google Scholar]
- El-Hoiydi, A.; Decotignie, J.D. WiseMAC: An Ultra Low Power MAC Protocol for Multi-hop Wireless Sensor Networks. In International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS); Springer: Berlin/Heidelberg, Germany, 2004; pp. 18–31. [Google Scholar]
- Dinh, T.; Kim, Y.; Gu, T.; Vasilakos, A.V. L-MAC: A wake-up time self-learning MAC protocol for wireless sensor networks. Comput. Netw. 2016, 105, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.M. Fundamentals of statistical signal processing; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Sarwate, D.V.; Pursley, M.B. Crosscorrelation properties of pseudorandom and related sequences. Proc. IEEE 1980, 68, 593–619. [Google Scholar] [CrossRef]
- Helleseth, T.; Kumar, P.V. Pseudonoise sequences. In The Mobile Communications Handbook; Taylor and Francis: Cleveland, OH, USA, 1999; Volume 264. [Google Scholar]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2001; Volume 4. [Google Scholar]
- Dinan, E.H.; Jabbari, B. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Commun. Mag. 1998, 36, 48–54. [Google Scholar] [CrossRef]
- Magistretti, E.; Gurewitz, O.; Knightly, E.W. 802.11 ec: Collision avoidance without control messages. IEEE/ACM Trans. Netw. 2013, 22, 1845–1858. [Google Scholar] [CrossRef]
- Magistretti, E. Coordination and Interference in 802.11 Networks: Inference, Analysis and Mitigation. Ph.D. Thesis, RICE University, Houston, TX, USA, 2012. [Google Scholar]
- Dorfman, R. The detection of defective members of large populations. Ann. Math. Stat. 1943, 14, 436–440. [Google Scholar] [CrossRef]
- Aldridge, M. The capacity of Bernoulli nonadaptive group testing. IEEE Trans. Inf. Theory 2017, 63, 7142–7148. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.L.; Jaggi, S.; Saligrama, V.; Agnihotri, S. Non-adaptive group testing: Explicit bounds and novel algorithms. IEEE Trans. Inf. Theory 2014, 60, 3019–3035. [Google Scholar] [CrossRef] [Green Version]
- Rom, R.; Sidi, M. Multiple Access Protocols: Performance and Analysis; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Atia, G.K.; Saligrama, V. Boolean compressed sensing and noisy group testing. IEEE Trans. Inf. Theory 2012, 58, 1880–1901. [Google Scholar] [CrossRef] [Green Version]
Bandwidth | 250 Kbps | Size of Hardware Preamble | 6 B |
Preamble | 192 s | Size of ACK | 5 B |
Slot time | 320 s | CCA Check Delay | s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurewitz, O.; Zaharia, O. Collision Prevention for Duty-Cycle Receiver-Initiation MAC Protocol via Multiple Access Reservation (MAR-RiMAC). Sensors 2021, 21, 127. https://doi.org/10.3390/s21010127
Gurewitz O, Zaharia O. Collision Prevention for Duty-Cycle Receiver-Initiation MAC Protocol via Multiple Access Reservation (MAR-RiMAC). Sensors. 2021; 21(1):127. https://doi.org/10.3390/s21010127
Chicago/Turabian StyleGurewitz, Omer, and Oren Zaharia. 2021. "Collision Prevention for Duty-Cycle Receiver-Initiation MAC Protocol via Multiple Access Reservation (MAR-RiMAC)" Sensors 21, no. 1: 127. https://doi.org/10.3390/s21010127
APA StyleGurewitz, O., & Zaharia, O. (2021). Collision Prevention for Duty-Cycle Receiver-Initiation MAC Protocol via Multiple Access Reservation (MAR-RiMAC). Sensors, 21(1), 127. https://doi.org/10.3390/s21010127