
sensors

Article

Minimizing Delay and Transmission Times with
Long Lifetime in Code Dissemination Scheme for
High Loss Ratio and Low Duty Cycle Wireless
Sensor Networks

Wei Qi 1, Wei Liu 2, Xuxun Liu 3, Anfeng Liu 1,4,* , Tian Wang 5, Neal N Xiong 6 and
Zhiping Cai 7

1 School of Information Science and Engineering, Central South University, Changsha 410083, China;
weiqicsu@csu.edu.cn

2 School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China; weiliu@csu.edu.cn
3 College of Electronic and Information Engineering, South China University of Technology,

Guangzhou 510641, China; liuxuxun@scut.edu.cn
4 The State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
5 College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China;

wangtian@hqu.edu.cn
6 Department of Mathematics and Computer Science, Northeastern State University,

Tahlequah, OK 74464, USA; xiongnaixue@gmail.com
7 Department of Networks Engineering, School of Computer, National University of Defense Technology,

Changsha 410073, China; zpcai@nudt.edu.cn
* Correspondence: afengliu@mail.csu.edu.cn; Tel.: +86-731-8887-9628

Received: 9 October 2018; Accepted: 16 October 2018; Published: 18 October 2018
����������
�������

Abstract: Software defined networks brings greater flexibility to networks and therefore generates
new vitality. Thanks to the ability to update soft code to sensor nodes, wireless sensor networks
(WSNs) brings profound changes to Internet of Things. However, it is a challenging issue to minimize
delay and transmission times and maintain long lifetime when broadcasting data packets in high
loss ratio and low duty cycle WSNs. Although there have been some research concerning code
dissemination, those schemes can only achieve a tradeoff between different performances, instead of
optimizing all these important performances at the same time. Therefore, in this paper we propose a
new strategy that can reduce delay and transmission times simultaneously. In traditional method,
the broadcasting nature of wireless communication is not sufficiently utilized. By allowing sons of
the same parent node to share awake slots, the broadcasting nature is well exploited and delay is
thus reduced as well as transmission times with lifetime not affected. And, as we discover there is
energy surplus when collecting data in area away from sink, we further improve this strategy so that
all the performances can be further bettered. Compared with traditional method, the methods we
design (IFAS, BTAS and AAPS) can respectively reduce delay by 20.56%, 31.59%, 55.16% and reduce
transmission times by 29.53%, 43.93%, 42.04%, while not reducing lifetime.

Keywords: wireless sensor networks; code dissemination; delay; lifetime; transmission times; low
duty cycle

1. Introduction

Wireless sensor networks (WSNs), consisting of tiny wireless sensing devices equipped with
data processing and communication capabilities, is an important element for realizing the Internet
of Things (IoT) [1–5]. And, Software defined networks (SDNs) brings more application prospect to

Sensors 2018, 18, 3516; doi:10.3390/s18103516 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5190-4761
https://orcid.org/0000-0002-0394-4635
http://dx.doi.org/10.3390/s18103516
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/10/3516?type=check_update&version=2

Sensors 2018, 18, 3516 2 of 44

WSNs [6,7]. With SDNs, sensor nodes can obtain new features and expand their application domain by
merely receiving new soft code without redeployment. Therefore, SDNs plays a key role in reducing
deployment costs and improving networks performance [8–12].

However, SDNs also brings new challenges to WSNs [13–16]. In WSNs, the sink node receives
new soft code first, then broadcasts the code in the networks by radio. Therefore, the nodes receiving
the new soft code can obtain new functions and generate new applications [7,13,15]. Through SDNs,
the function and application of networks can be redefined by merely changing the node’s code [13,15].
As a result, the deployment costs are greatly reduced and the procedure of promoting new features
is accelerated, which adapts to the rapid development of Internet of Things [17–21]. However, one
of the most challenging issues is how to disseminate soft code to every node effectively [6,7,11,13,15].
There are mainly three performance indicators to measure the spread of code: (1) delay; (2) lifetime; (3)
transmission times.

(1) The delay of dissemination refers to the time gap between the moment when sink node
begins to transmit code and the moment when the last node in the networks succeeds in receiving the
code [6,7,11,13,15]. Obviously, application requires the delay to be as small as possible. For instance, in
the monitoring and data perception in spot of industry, if data collection frequency, calculation method
or type of data perceived needs changing, these new features can be realized by updating the sensor
node’s code [21–24]. Apparently, during the update process, there will be difference between the nodes
with new code and others without it, which will result in some inconsistency between the old and new
systems. It is evident that the duration of such inconsistency should be as short as possible, so that
all the nodes can quickly adopt the new system. Thus, the delay of dissemination should be as small
as possible.

(2) The lifetime of networks usually refers to how long it functions before the first node dies.
Obviously, it is required that lifetime should be as long as possible. However, one of the key
characteristics of sensor node is that it is usually powered by battery and due to the constraints
of manufacturing costs, it should be as small as possible, which also makes it easier for nodes to be
deployed [25–27]. Under this circumstance, the volume of the batteries is small as well. Also, much
research suggests that the WSN is usually deployed in dangerous places [28–31], or places inaccessible
to human beings, which renders it unrealistic to change the dead batteries for new ones; this is another
challenging issue to save node energy for longer lifetime [32–35]. In WSNs, one of the effective ways
to save energy is the scheme of duty cycle [7,15]. In this scheme, sensor nodes adopt the method of
periodical sleep/awake. Since the node in sleep mode consumes less than one percent of the energy
consumed in awake mode, the node should be set in sleep mode as frequently as possible [7,15]. In
realistic duty cycle based WSNs, time is divided into several homogenous slots and during one slot,
node can complete the receiving and sending of a packet [7,15]. Thus, the duty cycle should be set
relatively small for the networks with sparse data. A duty cycle consists of n slots and the duration of
one cycle is T, during which there is only one awake slot and the other n − 1 slots are in sleep mode.
Although the nodes can save energy by adopting the duty cycle, it causes greater delay. That is because
when sender is ready to broadcast the code, it must wait until receiver is awake before beginning to
transmit packet.

(3) Reduce transmission times. In addition, radio is by nature capable of broadcasting. Namely,
when the sender is transmitting data, it is possible for all the nodes within its sending radius to receive
it [36–40]. Therefore, by exploiting this nature of wireless broadcasting, transmission times can be
greatly reduced [41–44]. Transmission times can directly affect the energy consumption of node [45–47].
Researchers suggest the greatest energy-consuming operation of sensor nodes is receiving and sending
data, which takes up over 80% of the energy consumption. Therefore, during propagation, since the
size of the code is fixed, it can be divided into N data packets to be sent. If the transmission times
of one packet can be effectively reduced, it will naturally reduce transmission times required for the
entire code propagation. Thus, to reduce the number of packets sent by nodes is the key to reduce
energy consumption.

Sensors 2018, 18, 3516 3 of 44

But, to reduce the number of packets sent is not an easy task. First of all, since nodes select
slot randomly in low duty cycle WSNs [7,14,15], when the sender is transmitting data packet,
there is not many nodes awake within its sending radius, which means the broadcasting nature
cannot be fully utilized. What is worse, because of the influence of communication channel and
communication environment, there is a certain loss ratio [48,49]. In hostile WSNs, the loss ratio can
be over 20% [50]. In order to guarantee high reliability of data communication in the environment of
unreliable communication, the general method is retransmission mechanism: when transmission fails,
sender uses re-sending or multi-resending to increase the reliability of transmission [50]. As a result,
the unreliability of wireless channel increases the number of retransmissions and energy consumption
is thus increased.

There have been some studies on code diffusion [6,7,11,13,15]. These studies generally abstract
networks into a tree, in which the sink node is the root and the starting point of code diffusion. Parent
nodes conduct data sending operation at their son nodes’ awake slots in turn. If a son node fails to
receive data, parent node will send it again in the next cycle. And so on until the data is successfully
received. The research in Ref. [51] points out: In reducing the times of data sending, the networks graph
generated according to the minimum spanning tree method can achieve the best result. However, the
delay in networks where the code is diffused along the minimum spanning tree is not necessarily the
minimum, while it is the minimum when data transmission is conducted according to the networks
graph generated along the shortest path from root to each node but its transmission times is not
necessarily the smallest. Therefore, Ref. [51] proposed a method which can achieve tradeoff between
delay and transmission times.

From the above discussion, it can be concluded that previous studies still have the following
deficiencies: (1) The delay is comparatively large and in many studies, if the loss ratio of wireless
link is p| 0 ≤ p ≤ 1 , in terms of expected probability, the average transmission times is approximately
t = 1/p. Namely, the expected delay of one hop is D = t× T = (1/p)× T. Obviously, we have
D ≥ T. In other words, the expected delay of one hop in WSNs without loss should be less than a
cycle T, while in WSNs with loss, 1/p T is required [51]. Therefore, for the networks with high loss
rate, the delay is large, while the transmission from sink to the final node needs multiple hops, the
delay of each hop accumulates to very large extent. (2) Excessive transmission times. As parent node
broadcasts at every son node’s awake slot, it does not fully take advantage of the radio function of
wireless transmission, so it does not effectively reduce the transmission times. If several son nodes
are in awake mode while the parent node is transmitting, only one broadcast is required to send data
to those nodes, which can effectively reduce transmission times. Reducing the transmission times
can effectively improve the lifetime of networks. (3) Previous strategies are often unable to achieve
optimization of delay, transmission times and lifetime at the same time. The reduction of delay is
usually achieved at the price of shorter lifetime, or transmission times is reduced by enlarging delay,
which is a tradeoff instead of all-round optimization.

Based on the above analysis, this paper proposes an effective code diffusion strategy which can
reduce delay and transmission times simultaneously. The main innovations of this paper are as follows:

(1) We first proposed a code diffusion scheme called If Fail Add Slot (IFAS). In the IFAS scheme,
parent node sends the data successively according to the awake slots of its son nodes, so the son nodes
with small serial numbers of awake slot receive the data first. Unlike previous strategies, in IFAS
scheme, when the son nodes with small serial number of awake slot fail to receive data, they will be
re-awake at the next node’s awake slot. In this way, when parent node sends data to the next son
node, the former nodes can also try receiving data. If the node fails again, it will continue to wake
up when parent node sends data until the reception is successful. Obviously, IFAS can effectively
reduce delay and transmission times. Because, in previous strategies, as long as the son node does not
receive successfully, the parent node will send again at the awake slot of this node in the next cycle, so
the additional delay is T and the additional sending times is 1. In IFAS, there is almost no increase
in transmission times, because when these nodes fail to receive data successfully, they will receive

Sensors 2018, 18, 3516 4 of 44

data again when parent node sends data to other son nodes, which makes full use of the broadcasting
feature of wireless channel and does not increase the times of sending. Meanwhile, in IFAS scheme,
node can receive data several times in one cycle, so it is possible to receive data successfully in one
cycle instead of several cycles even if receiving fails multiple times, which greatly reduces delay and
transmission times. Obviously, by reducing transmission times, energy consumption is also reduced,
which means lifetime is prolonged. Therefore, IFAS makes breakthrough where previous strategies
could only accomplish tradeoff between multiple performances and achieves optimization of multiple
performances at the same time, which is the first innovation point of this paper

(2) A Before Try Add Slot (BTAS) scheme is proposed that can further improve performance.
While IFAS allows packets that need resending to be received within a cycle without increasing the
number of deliveries, which is beneficial to the son nodes with small slot serial number, because it
can add awake slots when the reception fails, thus reducing the delay and transmission times without
increasing the energy consumption, it is not very efficient to the node with the largest slot serial
number. Because this son node is the last node to receive data from its parent node. If the sending is
unsuccessful, it can add awake slot to reduce delay and transmission times when parent node sends
data to the first node in the next cycle. However, this means the transmission to this node needs two
cycle T to be completed. Although it is still better than previous strategies even in such a bad situation,
we have found that the performance of IFAS can be further bettered. We have discovered that when
nodes collect data, the nodes near sink take up a large amount of data and consumes a large amount of
energy, while the nodes away from sink have surplus energy. Therefore, BTAS allots some awake slots
which belong to the brother nodes that wake up earlier in a cycle to the son node with the largest slot
serial number in area away from sink. In this way, BTAS can improve the performance of all son nodes
by the same margin.

(3) An Add Average Place Slot (AAPS) scheme is proposed to further improve networks
performance. Because in the strategies proposed previously, compared with traditional strategy,
the number of awake slots added is fairly small. Therefore, there is still energy left over in area
away from sink node, which can be exploited to add awake slots in the beginning of working cycle,
thus allowing code to be propagated timely, so that delay can be further reduced. AAPS can also
simultaneously reduce delay and transmission times and prolong lifetime, but, in contrast with
previous strategies, it may consume a bit more transmission times, yet, since the transmission times is
increased in area with energy surplus, the effect on lifetime is little.

(4) The strategies proposed in this paper make breakthrough where previous strategies cannot
achieve all-around optimization, which means they can optimize delay, transmission times and lifetime
at the same time, which is a huge step forward. After a lot of theoretical and experimental analysis,
compared to the traditional method, IFAS, BTAS, AAPS scheme can respectively reduce delay by
20.56%, 31.59%, 55.16% and transmission times by 29.53%, 43.93%, 42.04%, while not reducing lifetime.

The rest of this paper is organized as follows: In Section 2, the related work is stated. Then,
the networks model and problem statement is introduced in Section 3. IFAS, BTAS, AAPS schemes
are respectively illustrated in Section 4. Theoretical performance analyses of proposed schemes are
presented in Section 5. Results of simulation and analysis of experimental performances are presented
in Section 6. Finally, Section 7 provides conclusions.

2. Related Work

WSNs consists of a huge number of devices composed of microprocessor, power supply
equipment, memory and communication equipment [52–54] and is an important component of
Internet of Things (IoT). With the development of microprocessors, the processing and perceiving
ability of sensor nodes is getting stronger and stronger, greatly expanding the scope and field of
application, therefore greatly promoting the development of IoT [55,56]. Since these sensor nodes
already have the same processing power and function as, or even stronger than, that of a PC produced
10 years ago and the amount of data processed by these sensor nodes or devices equipped with

Sensors 2018, 18, 3516 5 of 44

sensor nodes is extremely large, the development of networks is profoundly affected. According to
scientific research [2], since 2011, the number of devices connected to Internet of Things (smartphones,
city-monitors and industrial-awareness devices, etc.) on earth has exceeded population, reaching 9
billion. It is estimated that by 2020, 24 billion devices will be connected to networks [2]. This situation
has promoted the emergence of new computing models, such as edge computing, big data networks
and so forth. These new computing models combined with cloud computing have brought new
opportunities and challenges to networks [57,58].

Another technology that has promoted the development of networks is SDNs [7,13,15]. SDNs is a
technology that allows hardware to work like software. In such technology, the hardware of networks
equipment performs the basic functions, while it is software-based, that is, the function of networks
equipment can be redefined by changing the software of it through solid-state software, thus making it
more flexible and able to update the software at any time to customize the networks adaptively [13,15].

The above technologies bring both opportunities and new challenges to WSNs. Among them, the
update and the soft code diffusion of WSNs are summarized as the following most important types of
research based on different targets of optimization.

2.1. Research on Delay Optimization

There have been some research on code diffusion and one of the most important goals of
code diffusion in WSNs optimization is delay optimization. Obviously, delay should be as small
as possible. These research can be divided into two types, one of which is directed at duty cycle
based WSNs [7,13,15]. In such networks, every node adopts the approach of periodical sleep/awake
independently. For the WSNs with low duty cycle, there is only one awake slot during a working cycle,
while the node is asleep in other slots, which is much more energy-efficient. In WSNs that have bigger
duty cycle, nodes are allowed to have more than one awake slots in a cycle, which apparently makes it
easier for the code to be propagated, while it calls for more energy. Following is a study that is most
relevant to this paper [51].

In this type of scheme, code dissemination can be illustrated by Figure 1. We assume that the
sink node S is responsible for sending the code to its four son nodes, namely node A, B, C, D and
their awake slots are ta, tb, tc, td. Thus, the sink node performs the sending operation respectively
at slot ta, tb, tc, td (see Figure 1). However, due to the unreliability of wireless communication, the
percentage of successful transmission from sink to each son node is pa, pb, pc, pd. Therefore, after
one round of transmission to each son node, there are possibly some nodes that have not got the
code successfully. Then, to those son nodes without code, sink will send the code again during the
next working cycle at corresponding slot; should there still be nodes yet without code, code will be
sent again in next cycle. In Ref. [51], the expected transmission times is 1/p, where p denotes the
successful rate of one-time transmission. According to the scheme above, Ref. [51] gives the code
diffusion method of the entire networks. The essence of it is a tradeoff between delay and transmission
times. First, the networks are abstracted to a tree with sink as root. For every two nodes that are able
to communicate, they are connected by an edge, the weight of which is 1/p, the expected transmission
times. Trees built in this way, when minimum spanning tree algorithm is used, will achieve smallest
expected transmission times. However, the delay in this case may not be the smallest. The shortest
path scheme based on the shortest path from sink to each node is able to achieve the smallest delay,
while the transmission times may not be optimal. Therefore, Ref. [51] put forward a tradeoff scheme
between delay and transmission times. The essence of it is a combined scheme of minimum spanning
tree and shortest path. However, one of the deficiencies is that delay is still quite huge. In fact, even
when shortest path is realized, the delay is still huge. The ultimate cause is that when code is not
received successfully, delay will be increased by a cycle. And, when the delay of previous nodes
increases, that of descendant will increase as a result. Therefore, delay of the whole networks also
increases. Actually, the transmission times of this scheme is big as well, since the broadcasting nature
of wireless communication, is not fully utilized, which also has effects on energy consumption and

Sensors 2018, 18, 3516 6 of 44

lifetime under this scheme. While in the method proposed by us, since we allow the node to wake up
as quickly as possible instead of waking up in the next cycle, delay is largely reduced. And, because
we utilize the broadcasting nature, there are possibly several nodes sharing the same slot so that the
transmission times is also reduced.Sensors 2018, 18, x FOR PEER REVIEW 6 of 42

S

A B C D

A
B
C
D

S

tb

tc

td

ta
Send

Receive

Sleep

pa pb pc pd

Figure 1. Traditional code diffusion scheme.

There are still other methods concerning code dissemination in WSNs, one of them being
gossiping [47]. Gossiping is widely used in networks where it is not obliged to ensure every node
receives data with small delay. Since it has very low environmental requirements and transmission
costs, its application is versatile in delay-tolerating networks. However, in this paper, the networks
we study is different: It is not delay-tolerating. It has to ensure every node receives data. The code
transmission is conducted in prescriptive slots along decided route instead of random gossiping.
Therefore, the method we propose is much more suitable.

2.2. Research on Transmission Times

In such type of research, the main target is to reduce the times of node’s
broadcasting/transmitting, namely to deal with the minimum-transmission broadcast (MTB) issue.
This research can also be divided into two types: duty cycle based WSNs and non-duty cycle based
WSNs. In non-duty cycle based WSNs, since the node is always active, the code can be disseminated
at any time as long as there is no interference in the channel. However, if every node is broadcasting,
it will cause broadcast storm, thus greatly consuming energy. Therefore, in order to reduce
transmission times, the approach adopted in Ref. [59,60] is to find a Minimum Connected Dominating
Set (MCDS) of the networks. MCDS is a set of nodes with the characteristics like these: there is a route
connecting any two nodes in this set and in the meantime, any node of this networks is a neighbor
one-hop away from a node in the set, which means if all the nodes in the set broadcast once, any node
in the networks can receive the code. Apparently, if the code is sent to every node in MCDS, the code
dissemination can be completed in the entire networks with one transmission from each node of
MCDS. Obviously, the number of nodes in MCDS is much smaller than that of the whole networks,
therefore the transmission times can be greatly reduced. A similar work is minimum flooding tree
designed in Ref. [61] and it is proved by the author that this method is equal to MCDS.

But, this method needs adapting before applied to duty cycle based WSNs. Since in duty cycle
based networks, nodes rotate between sleep and awake modes periodically, only one transmission is
far from enough to allow all nodes to receive code. When sender is broadcasting, a certain number of
nodes may be in sleep mode, thus unable to receive code. As a result, the MTB problem in duty-
cycled networks (MTB-DC problem) gets more complex and challenging. Similar to MCDS, MTB-
DCL problem can also be addresses with a broadcast backbone. Then, after the slots and broadcasting
time are carefully planned, the code can be first disseminated to every node in the broadcast backbone
quickly, from which, after one or several transmissions, code can be sent to every node in the
networks. Duc and his colleagues in Ref. [11] proposed a Level-Based Approximation Scheme based
on the thought described above. In their scheme, it is assumed that nodes in broadcast backbone do
not rotate between sleep/awake, instead, they are always active to build up broadcast backbone
(similar to MCDS) and then code is disseminated into the whole networks through broadcast
backbone. Research aimed at MTB-DC problem also include: Zhao D in Ref. [7] presented two
approximation algorithms, BS-1 and BS-2. Khiati M in Ref. [62] proposed a Broadcast over Duty-
Cycle and LEACH (BOD-LEACH) protocol.

In fact, the delay in MTB-DC problem is mainly decided by the time needed to build broadcast
backbone. Because, after broadcast backbone is built, it only requires at most a constant time |ܶ| to
finish the dissemination in the whole networks. And duty cycle is an important element when

Figure 1. Traditional code diffusion scheme.

There are still other methods concerning code dissemination in WSNs, one of them being
gossiping [47]. Gossiping is widely used in networks where it is not obliged to ensure every node
receives data with small delay. Since it has very low environmental requirements and transmission
costs, its application is versatile in delay-tolerating networks. However, in this paper, the networks
we study is different: It is not delay-tolerating. It has to ensure every node receives data. The code
transmission is conducted in prescriptive slots along decided route instead of random gossiping.
Therefore, the method we propose is much more suitable.

2.2. Research on Transmission Times

In such type of research, the main target is to reduce the times of node’s broadcasting/transmitting,
namely to deal with the minimum-transmission broadcast (MTB) issue. This research can also be
divided into two types: duty cycle based WSNs and non-duty cycle based WSNs. In non-duty cycle
based WSNs, since the node is always active, the code can be disseminated at any time as long as
there is no interference in the channel. However, if every node is broadcasting, it will cause broadcast
storm, thus greatly consuming energy. Therefore, in order to reduce transmission times, the approach
adopted in Ref. [59,60] is to find a Minimum Connected Dominating Set (MCDS) of the networks.
MCDS is a set of nodes with the characteristics like these: there is a route connecting any two nodes in
this set and in the meantime, any node of this networks is a neighbor one-hop away from a node in the
set, which means if all the nodes in the set broadcast once, any node in the networks can receive the
code. Apparently, if the code is sent to every node in MCDS, the code dissemination can be completed
in the entire networks with one transmission from each node of MCDS. Obviously, the number of
nodes in MCDS is much smaller than that of the whole networks, therefore the transmission times can
be greatly reduced. A similar work is minimum flooding tree designed in Ref. [61] and it is proved by
the author that this method is equal to MCDS.

But, this method needs adapting before applied to duty cycle based WSNs. Since in duty cycle
based networks, nodes rotate between sleep and awake modes periodically, only one transmission is
far from enough to allow all nodes to receive code. When sender is broadcasting, a certain number of
nodes may be in sleep mode, thus unable to receive code. As a result, the MTB problem in duty-cycled
networks (MTB-DC problem) gets more complex and challenging. Similar to MCDS, MTB-DCL
problem can also be addresses with a broadcast backbone. Then, after the slots and broadcasting time
are carefully planned, the code can be first disseminated to every node in the broadcast backbone
quickly, from which, after one or several transmissions, code can be sent to every node in the networks.
Duc and his colleagues in Ref. [11] proposed a Level-Based Approximation Scheme based on the
thought described above. In their scheme, it is assumed that nodes in broadcast backbone do not
rotate between sleep/awake, instead, they are always active to build up broadcast backbone (similar
to MCDS) and then code is disseminated into the whole networks through broadcast backbone.

Sensors 2018, 18, 3516 7 of 44

Research aimed at MTB-DC problem also include: Zhao D in Ref. [7] presented two approximation
algorithms, BS-1 and BS-2. Khiati M in Ref. [62] proposed a Broadcast over Duty-Cycle and LEACH
(BOD-LEACH) protocol.

In fact, the delay in MTB-DC problem is mainly decided by the time needed to build broadcast
backbone. Because, after broadcast backbone is built, it only requires at most a constant time |T| to
finish the dissemination in the whole networks. And duty cycle is an important element when building
broadcast backbone. If a node can have several active slots in a cycle T, apparently, it is possible to
conduct code transmission for several times in a cycle, therefore the time needed to build broadcast
backbone is shorter, thus reducing transmission time. Apparently, if the active slots of a node in a
cycle can be added, the possibility of sending data is increased and the possibility of several nodes’
receiving data at a same slot during broadcast is also increased, thus accelerating the dissemination of
code. However, when adding active slots, nodes consume more energy. So lifetime may be affected.
But, we have discovered that in WSNs, when conducting data collection, nodes near sink node take
up more data and consume more energy while nodes away from sink take up less data and consume
less energy [63]. Therefore, if the energy surplus is fully utilized, delay can be reduced while lifetime
is not affected. Based on the thought described above, we proposed an adjustable duty cycle based
fast disseminate (ADCFD) scheme that can effectively reduce code diffusion delay [6]. A few other
research dealing with energy-efficiency are in Ref. [64,65].

In addition, the speed of code dissemination is also related to the radius of broadcast. Apparently,
the longer is the radius, the larger is the number of nodes that are able to receive code and the further
is the distance of one transmission. In this way, code can be disseminated faster in the whole networks
with less transmission times. However, since it will increase energy consumption to broadcast with
longer radius, the lifetime may well be affected. In Ref. [15], we proposed a code dissemination scheme
based on unequal radius. The basic thought of this scheme is that the sending radius in area away from
sink with energy surplus is enlarged while it remains the same in area near sink. After experiment and
theoretical analysis, it is demonstrated that the proposed scheme can effectively reduce delay while
not affecting lifetime [15].

2.3. Research on Reliability

In previous research, it is assumed that wireless communication channel is ideal, without packets
loss, therefore only one transmission is required to complete code dissemination. However, in reality
the packet loss ratio of wireless communication is way higher than that of wired networks. When the
surrounding environment is complex, the loss ratio is even higher. According to relevant research [50]:
the packet loss ratio of wireless networks can be over 30%. Therefore, the reliability of transmission
needs considering in wireless communication. Retransmission scheme is one of the most widely used
and effective ways to solve the problem of unreliable transmission, that is, when sender fails to send
the data, it will resend the data again. Thus, in consideration of retransmission, some of the schemes
mentioned above is no longer suitable. The current scheme is demonstrated in Figure 1, which adopts
the method of retransmission at the awake slot in the next cycle when transmission fails. Obviously,
we have already explained why this method is not effective. And, as stated before, by allowing the
node to wake up as quickly as possible in the same cycle, our method can sufficiently reduce the delay.

This paper is focused on WSNs with packet loss and low duty cycle. Therefore, the complexity
and difficulty of this research has surpassed previous ones, especially when trying to reduce delay and
transmission times at the same time without shortening lifetime.

3. Networks Model and Problem Statement

3.1. Networks Model

The networks model adopted in this paper is the same as that of Ref. [53]. The nodes are evenly
distributed in a circular region with radius R, with a root node Sbase and n identical source nodes

Sensors 2018, 18, 3516 8 of 44

V = {v1, v2, vn}. Thus, the entire networks can be represented as W = {Sbase, v1, v2, vn},
where vi is the node ID. Sink node is located at the center of the circle. Node density is ρ, according to
definition, ρ = n

πR2 . Similar networks with that in Ref. [53] can be converted into a tree with sink node
as the root of the tree, as shown in Figure 2 in Section 4.1. The main functions of sensor networks are
data sensing and the transmission of perceived data through multiple hops routed to sink. The data
collected by each node is first sent to its parent node and then passed through the parent nodes step by
step, until it reaches Sbase.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 42

Therefore, the problems dealt with in this paper can be expressed by the following formula: ቐ min(ܦ) = min	(∑ Delay(ݒ௜)௩೔∈௏)min(ܶ) = min	(∑ TransmissionTimes(ݒ௜)௩೔∈௏)min(ܧ) = min	(∑ EnergyConsumption(ݒ௜)௩೔∈௏).

For the convenience of readers, Table 1 summarizes the symbols used in the paper, their
meanings and their values.

Table 1. Symbols in the networks.

Symbol Meaning Value ݉ the number of slots in a cycle decided when computing ݊ the number of source nodes in the networks decided when computing ௧ܲ௥௔௡௦ possibility of successful single transmission decided when computing ௧ܲ௛ total successful transmission possibility threshold decided when computing ௠ܶ௔௫ maximum transmission times decided when computing ܧ௧௥௔௡௦ the energy required to send a packet 0.5 J ܧ௥௘௖௘௜௩௘ the energy required to receive a packet 0.4 J ܧ௔௪௔௞௘ the energy required when node wakes up to detect whether it needs
to receive the packet

0.1 J

4. Minimum Delay Scheme Design

4.1. Research Motivation

In this section, a specific network is used to compare the different performances to state the
research motivation. The networks topology adopted is shown in Figure 2. In such networks, the
working cycle ܶ	= 8, which means a cycle consists of eight slots, numbered {0, 1, 2, 3, 4, 5, 6, 7}.
Suppose all the first son nodes of all the parent nodes in the figure wake up at slot 0 and the maximum
retransmission number is set to 3. The second son nodes wake up at slot 4 and the maximum number
of retransmission is set to 2. The third son nodes (if any) wake up at slot 7 and the maximum number
of retransmission is set to 3.

S

1 2 3

5 7 9

21 23

11

29

4

13 1612 1815

6

2017 25 26 27

8 10

24 302814 19 22

0

0

0 0 0 0 0 0 0 0

0 0

4

4 4 4

4 4 4 4 4 4 4 4

7

7 7

777

S
1

0

4

7

Sink Node

Node V1

Awake at 0

Awake at 4

Awake at 7

Figure 2. Networks topology.

Research motivation is illustrated by describing how the sink node in Figure 2 transfers code to ݒଵ, ,ଶݒ ଷ. The scheme in comparison is that proposed in Ref. [53]: parent node sends code at each ofݒ
its son nodes’ wake slot. If son node fails to receive code, parent node will resend at the same slot in
the next cycle. Therefore, the diffusion process of code to ݒଵ, ,ଶݒ ଷݒ using traditional scheme is
illustrated in Figure 3 (left). Every node only receives packet at its own slot. ݒଵ fails during the first
and the second cycle and succeeds in the third cycle at its own slot, Delay(ݒଵ) = 16; ଶ fails duringݒ
the first cycle and succeed at its own slot in the second cycle, Delay(ݒଶ) = 12; ଷ fails during the firstݒ
and the second cycle and succeeds in the third cycle at its own slot, Delay(ݒଷ) = 23.

Figure 2. Networks topology.

Source nodes are driven by the same battery and have limited energy. The energy of source nodes
is set as Ebattery and the root node has unlimited energy. Each parent has a different number of son
nodes. In order to save energy, all nodes have two modes: awake and sleep. During one working
cycle, nodes wake up only at one slot and sleep at the others. A working cycle is divided into m time
slots shared by all nodes, {s1, s2, , sm}. During initialization, each node randomly selects its own
awake slot and informs its parent. The awake slots of the brother nodes can be obtained by asking
each other. The successful rate of single-time transmission is Ptrans. To prevent multiple retransmission
of the same data packet, the maximum transmission times is set to Tmax according to Ptrans, in which
Tmax is the minimum transmission times for the total success ratio to reach a threshold Pth.

Code diffusion is the main research content of this paper. The sensor networks belong to SDNs,
which means networks functions can be updated by spreading code irregularly. During code diffusion,
starting from the root node Sbase, packets are delivered from parent to son nodes and then, if son nodes
receive the packet correctly, they will send it to their own son nodes, to realize data packet broadcast.
The parent node knows when the son nodes wake up and sends the packet to them at corresponding
slots. When the parent node confirms that the packet is received correctly, it stops sending the packet.

There are three types of energy consumption that exist in the model when broadcasting. The
first type is the energy consumed when the parent node sends the packet to the son node (denoted
as Etrans); the second type is the energy consumed when the son node receives the packet from the
parent node (denoted as Ereceive); the third type is the energy consumed when the son node wakes up
to detect whether the parent node sends the packet to it or not (denoted as Eawake). It is assumed that
Eawake is included in Ereceive. And it is assumed that the packet sent is of the same size, so the energy
used to send and receive the packet is unchanged, in other words, Etrans and Ereceive maintain the same
during the whole process.

3.2. Problem Statement

Definition 1. Minimum broadcast delay (denote broadcast delay as D). In this paper, Delay(vi) of node vi is
defined as the number of slots between sending data packets from Sbase and successful reception of data packets

Sensors 2018, 18, 3516 9 of 44

by vi. General broadcast delay of the networks is ∑vi∈V Delay(vi). Therefore, the goal of this paper in the aspect
of delay can be summarized as the following formula:

min(D) = min(∑
vi∈V

Delay(vi)).

Definition 2. Minimum transmission times (denote transmission times as T). In this paper,
the TransmissionTimes(vi) of the parent node is defined as the number of times that the parent node vi sends
the packet to all of its sons until they successfully receive the packet. General transmission times of the networks
is ∑vi∈V TransmissionTimes(vi). Therefore, the object of this paper in terms of transmission times can be
summarized as the following formula:

min(T) = min(∑
vi∈V

TransmissionTimes(vi)).

Definition 3. Minimum energy consumption (denote energy consumption as E). In this paper,
EnergyConsumption(vi) of node vi is defined as the energy which vi uses to receive the packet, send the
packet and wake up during the whole time from when Sbase sends the data packet to when all the nodes
receive the data packet. EnergyConsumption(vi) = aEtrans + bEreceive + cEawake. a, b and c are respectively
the number of times vi sends the packet, the number of times vi receives the packet and the number of
times vi wakes up during the code dissemination in the whole networks. General energy consumption
is thus ∑i⊆V EnergyConsumption(vi). Therefore, the goal of this paper in energy consumption can be
summarized as the following formula:

min(E) = min(∑
vi∈V

EnergyConsumption(vi)).

Therefore, the problems dealt with in this paper can be expressed by the following formula:
min(D) = min(∑vi∈V Delay(vi))

min(T) = min(∑vi∈V TransmissionTimes(vi))

min(E) = min(∑vi∈V EnergyConsumption(vi))

.

For the convenience of readers, Table 1 summarizes the symbols used in the paper, their meanings
and their values.

Table 1. Symbols in the networks.

Symbol Meaning Value

m the number of slots in a cycle decided when computing
n the number of source nodes in the networks decided when computing

Ptrans possibility of successful single transmission decided when computing
Pth total successful transmission possibility threshold decided when computing

Tmax maximum transmission times decided when computing
Etrans the energy required to send a packet 0.5 J

Ereceive the energy required to receive a packet 0.4 J

Eawake
the energy required when node wakes up to
detect whether it needs to receive the packet 0.1 J

4. Minimum Delay Scheme Design

4.1. Research Motivation

In this section, a specific network is used to compare the different performances to state the
research motivation. The networks topology adopted is shown in Figure 2. In such networks, the
working cycle T = 8, which means a cycle consists of eight slots, numbered {0, 1, 2, 3, 4, 5, 6, 7}.

Sensors 2018, 18, 3516 10 of 44

Suppose all the first son nodes of all the parent nodes in the figure wake up at slot 0 and the maximum
retransmission number is set to 3. The second son nodes wake up at slot 4 and the maximum number
of retransmission is set to 2. The third son nodes (if any) wake up at slot 7 and the maximum number
of retransmission is set to 3.

Research motivation is illustrated by describing how the sink node in Figure 2 transfers code to
v1, v2, v3. The scheme in comparison is that proposed in Ref. [53]: parent node sends code at each
of its son nodes’ wake slot. If son node fails to receive code, parent node will resend at the same slot
in the next cycle. Therefore, the diffusion process of code to v1, v2, v3 using traditional scheme is
illustrated in Figure 3 (left). Every node only receives packet at its own slot. v1 fails during the first
and the second cycle and succeeds in the third cycle at its own slot, Delay(v1) = 16; v2 fails during the
first cycle and succeed at its own slot in the second cycle, Delay(v2) = 12; v3 fails during the first and
the second cycle and succeeds in the third cycle at its own slot, Delay(v3) = 23.Sensors 2018, 18, x FOR PEER REVIEW 10 of 42

V1

V2

V3

V1

V2

V3

V1

V2

V3

V1

V2

V3

V1

V2

V3

V1

V2

V3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Succeed

Fail
Sleep

Figure 3. Traditional diffusion scheme (left) and IFAS (right).

According to If Fail Add Slot (IFAS) scheme, after parent node has sent code to its son node, if
the reception fails, the node will wake up again next time when parent node sends code to its brother
node and if it fails again, the node will wake up again when parent node sends code to other nodes.
Since the node is destined to wake up again to receive code if the reception fails, IFAS does not
increase the times of reception, therefore not increasing energy consumption. And to the sender
(parent node), instead of adding sending times, the broadcast nature of radio is used to allow several
nodes to receive data simultaneously. Using this approach, it avoids the sending operation in the next
cycle that is destined in traditional scheme, meanwhile, delay is also reduced. The sending process is
illustrated in Figure 3 (right). In the first cycle, ݒଵ	fails at its own slot and wakes up again at	ݒଶ’s slot.
This time, ݒଵ also fails. Then, it wakes up again and succeeds at ݒଷ’s slot, Delay(ݒଵ) = 7; ଶ fails toݒ
receive code at its own slot and then it wakes up again at ݒଷ ’s slot and succeds in receiving, Delay(ݒଶ) = 7; ଷ fails at its own slot in the first cycle and in the second cycle it fails as well, finally itݒ
succeeds in the third cycle at its own slot, Delay(ݒଷ) = 23.

Table 2 shows the delay of all the nodes in the model shown in Figure 2 when the traditional
diffusion method is adopted and the average delay is 45.9. The total number of deliveries is 78, with
an average of 2.6.

Table 2. Delay under traditional scheme. ݒଵ ݒଶ ݒଷ ݒସ ݒହ ݒ଺ ݒ଻ ݒ ଼ݒଽ ݒଵ଴
 ଶ଴ݒ ଵଽݒ ଵ଼ݒ ଵ଻ݒ ଵ଺ݒ ଵହݒ ଵସݒ ଵଷݒ ଵଶݒ ଵଵݒ 36 40 28 32 39 28 40 23 12 16
 ଷ଴ݒ ଶଽݒ ଶ଼ݒ ଶ଻ݒ ଶ଺ݒ ଶହݒ ଶସݒ ଶଷݒ ଶଶݒ ଶଵݒ 56 52 56 47 44 48 63 52 64 47
44 48 44 64 52 56 52 64 60 71

Table 3 shows the delay of all the nodes in the model shown in Figure 2 when IFAS is adopted
and the average delay is 32.47. The total number of deliveries is 54 and the average is 1.8. Compared
with traditional scheme, the average delay is decreased by 29.26% and the average transmission times
is decreased by 30.77%.

Table 3. Delay under IFAS scheme. ݒଵ ݒଶ ݒଷ ݒସ ݒହ ݒ଺ ݒ଻ ݒ ଼ݒଽ ݒଵ଴
 ଶ଴ݒ ଵଽݒ ଵ଼ݒ ଵ଻ݒ ଵ଺ݒ ଵହݒ ଵସݒ ଵଷݒ ଵଶݒ ଵଵݒ 31 31 20 16 31 15 15 23 7 7

 ଷ଴ݒ ଶଽݒ ଶ଼ݒ ଶ଻ݒ ଶ଺ݒ ଶହݒ ଶସݒ ଶଷݒ ଶଶݒ ଶଵݒ 32 44 40 39 23 23 39 23 23 47
28 32 36 40 44 40 44 55 55 71

In the IFAS mode, since ݒଵ wakes up first in the working cycle, if it fails to receive at its own
slot, there will be two more chances. ݒଶ	wakes up second. If it fails to receive at its own slot, there

Figure 3. Traditional diffusion scheme (left) and IFAS (right).

According to If Fail Add Slot (IFAS) scheme, after parent node has sent code to its son node, if the
reception fails, the node will wake up again next time when parent node sends code to its brother node
and if it fails again, the node will wake up again when parent node sends code to other nodes. Since
the node is destined to wake up again to receive code if the reception fails, IFAS does not increase the
times of reception, therefore not increasing energy consumption. And to the sender (parent node),
instead of adding sending times, the broadcast nature of radio is used to allow several nodes to receive
data simultaneously. Using this approach, it avoids the sending operation in the next cycle that is
destined in traditional scheme, meanwhile, delay is also reduced. The sending process is illustrated in
Figure 3 (right). In the first cycle, v1 fails at its own slot and wakes up again at v2’s slot. This time, v1

also fails. Then, it wakes up again and succeeds at v3’s slot, Delay(v1) = 7; v2 fails to receive code at
its own slot and then it wakes up again at v3’s slot and succeds in receiving, Delay(v2) = 7; v3 fails at
its own slot in the first cycle and in the second cycle it fails as well, finally it succeeds in the third cycle
at its own slot, Delay(v3) = 23.

Table 2 shows the delay of all the nodes in the model shown in Figure 2 when the traditional
diffusion method is adopted and the average delay is 45.9. The total number of deliveries is 78, with
an average of 2.6.

Table 2. Delay under traditional scheme.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
16 12 23 40 28 39 32 28 40 36

v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
47 64 52 63 48 44 47 56 52 56

v21 v22 v23 v24 v25 v26 v27 v28 v29 v30
44 48 44 64 52 56 52 64 60 71

Sensors 2018, 18, 3516 11 of 44

Table 3 shows the delay of all the nodes in the model shown in Figure 2 when IFAS is adopted
and the average delay is 32.47. The total number of deliveries is 54 and the average is 1.8. Compared
with traditional scheme, the average delay is decreased by 29.26% and the average transmission times
is decreased by 30.77%.

Table 3. Delay under IFAS scheme.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
7 7 23 15 15 31 16 20 31 31

v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
47 23 23 39 23 23 39 40 44 32

v21 v22 v23 v24 v25 v26 v27 v28 v29 v30
28 32 36 40 44 40 44 55 55 71

In the IFAS mode, since v1 wakes up first in the working cycle, if it fails to receive at its own slot,
there will be two more chances. v2 wakes up second. If it fails to receive at its own slot, there will be one
more chance. Therefore, IFAS method significantly reduces Delay(v1) and Delay(v2). However, since
v3 is the last node to wake up, the IFAS method cannot be used to improve performance. Therefore, on
the basis of IFAS, we proposed the Before Try Add Slot (BTAS) strategy. Since the nodes away from
sink have energy surplus, for the last waking nodes like v3, this strategy adds awake slots at the slots
of other son nodes who wake up earlier, thereby reducing delay. Its specific sending process is shown
in Figure 4, while the process of v1 and v2 is the same as that of IFAS, v3 adds an active slot at the slot
of v1, at which the receiving fails, then it wakes up at the slot of v2, at which the receiving fails again
and finally it succeeds at its own slot, Delay(v3) = 7.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 42

will be one more chance. Therefore, IFAS method significantly reduces Delay(ݒଵ) and Delay(ݒଶ).
However, since ݒଷ is the last node to wake up, the IFAS method cannot be used to improve
performance. Therefore, on the basis of IFAS, we proposed the Before Try Add Slot (BTAS) strategy.
Since the nodes away from sink have energy surplus, for the last waking nodes like	ݒଷ, this strategy
adds awake slots at the slots of other son nodes who wake up earlier, thereby reducing delay. Its
specific sending process is shown in Figure 4, while the process of ݒଵ and ݒଶ is the same as that of
IFAS, ݒଷ adds an active slot at the slot of ݒଵ, at which the receiving fails, then it wakes up at the slot
of ݒଶ, at which the receiving fails again and finally it succeeds at its own slot,	Delay(ݒଷ) = 7.

V1

V2

V3

0 1 2 3 4 5 6 7

Succeed

Fail

Sleep

Figure 4. BTAS method.

Table 4 shows the delay of all the nodes in the model shown in Figure 2 when using the BTAS
method and the average delay is 22.87. The total number of deliveries is 42, with an average of 1.4. In
comparison with the traditional scheme, the average delay is decreased by 57.95%, the average
transmission times is decreased by 46.15%. In comparison with IFAS, the average delay is decreased
by 29.57% and the average transmission times is decreased by 22.22%.

Table 4. Delay under BTAS scheme. ݒଵ ݒଶ ݒଷ ݒସ ݒହ ݒ଺ ݒ଻ ݒ ଼ݒଽ ݒଵ଴
 ଶ଴ݒ ଵଽݒ ଵ଼ݒ ଵ଻ݒ ଵ଺ݒ ଵହݒ ଵସݒ ଵଷݒ ଵଶݒ ଵଵݒ 15 15 28 24 15 15 15 7 7 7

 ଷ଴ݒ ଶଽݒ ଶ଼ݒ ଶ଻ݒ ଶ଺ݒ ଶହݒ ଶସݒ ଶଷݒ ଶଶݒ ଶଵݒ 40 28 24 23 23 23 23 23 23 15
36 40 44 24 28 24 28 23 23 23

In the traditional method, since the son node wakes up at only one slot in a cycle, while there
are many slots in one cycle, when the parent node is ready for the code to be sent, it often needs to
wait a long time until the son node wakes up, so it can send code to the son node, thus causing huge
delay. The nodes away from the sink have energy surplus, therefore, they can have extra awake slots
to receive code. The extra slots added are decided in this way: they are located at the place where the
active slots are most evenly distributed in the working cycle, that is, the location which makes the
expected delay the least. After the slots are added, the node will continue to work in IFAS method.
This reduces the delay of the parent’s waiting for son nodes to wake up, which is unavoidable in the
traditional method. At the same time, since the son nodes of the same parent node all add slots, the
coverage of slots in a cycle is improved, so that when the node fails to receive, the time it waits for
the next slot when code is available is reduced, further improving the performance of the IFAS
algorithm. Therefore, using this method can reduce both the delay of waiting for the son node to
wake up and the delay of waiting for the next slot after failure.

In the model shown in Figure 2, we assume that layer 3 has enough energy to add one slot and
layer 4 has enough energy to add two slots. Therefore, as shown in Figure 5 (top), in the third layer,
the nodes that wake up at slot 0 add one slot at slot 4; the nodes that wake up at slot 4 add one slot at
time 0; the nodes that wake up at slot 7 add one slot at slot 3. In the fourth layer, as shown in Figure
5 (below), the nodes that wake up at slot 0 add two slots at slot 3 and slot 6; the nodes that wake up
at slot 4 add two slots at slot 1 and slot 7; the nodes that wake up at slot 7 add two slots at slot 1 and
slot 4.

Figure 4. BTAS method.

Table 4 shows the delay of all the nodes in the model shown in Figure 2 when using the BTAS
method and the average delay is 22.87. The total number of deliveries is 42, with an average of 1.4.
In comparison with the traditional scheme, the average delay is decreased by 57.95%, the average
transmission times is decreased by 46.15%. In comparison with IFAS, the average delay is decreased
by 29.57% and the average transmission times is decreased by 22.22%.

Table 4. Delay under BTAS scheme.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
7 7 7 15 15 15 24 28 15 15

v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
15 23 23 23 23 23 23 24 28 40

v21 v22 v23 v24 v25 v26 v27 v28 v29 v30
36 40 44 24 28 24 28 23 23 23

In the traditional method, since the son node wakes up at only one slot in a cycle, while there
are many slots in one cycle, when the parent node is ready for the code to be sent, it often needs to

Sensors 2018, 18, 3516 12 of 44

wait a long time until the son node wakes up, so it can send code to the son node, thus causing huge
delay. The nodes away from the sink have energy surplus, therefore, they can have extra awake slots
to receive code. The extra slots added are decided in this way: they are located at the place where the
active slots are most evenly distributed in the working cycle, that is, the location which makes the
expected delay the least. After the slots are added, the node will continue to work in IFAS method.
This reduces the delay of the parent’s waiting for son nodes to wake up, which is unavoidable in the
traditional method. At the same time, since the son nodes of the same parent node all add slots, the
coverage of slots in a cycle is improved, so that when the node fails to receive, the time it waits for the
next slot when code is available is reduced, further improving the performance of the IFAS algorithm.
Therefore, using this method can reduce both the delay of waiting for the son node to wake up and the
delay of waiting for the next slot after failure.

In the model shown in Figure 2, we assume that layer 3 has enough energy to add one slot and
layer 4 has enough energy to add two slots. Therefore, as shown in Figure 5 (top), in the third layer,
the nodes that wake up at slot 0 add one slot at slot 4; the nodes that wake up at slot 4 add one slot at
time 0; the nodes that wake up at slot 7 add one slot at slot 3. In the fourth layer, as shown in Figure 5
(below), the nodes that wake up at slot 0 add two slots at slot 3 and slot 6; the nodes that wake up at
slot 4 add two slots at slot 1 and slot 7; the nodes that wake up at slot 7 add two slots at slot 1 and
slot 4.Sensors 2018, 18, x FOR PEER REVIEW 12 of 42

V1

V2

V3

0 1 2 3 4 5 6 7

Added Slot

Sleep

Original Slot

0V1

V2

V3

0 1 2 3 4 5 6 7

Added Slot

Sleep

Original Slot

Figure 5. The added slots in the third layer (top) and the added slots in the fourth layer (below).

Table 5 shows the delay of all the nodes in the model shown in Figure 2 when AAPS is adopted
and the average delay is 21.43. The total number of deliveries is 44, with an average of 1.47. Compared
with the traditional scheme, the average delay is reduced by 53.31% and the average transmission
times is reduced by 43.46%. Compared with IFAS, the average delay is reduced by 34.00% and the
average transmission times is reduced by 18.33%. Compared with BTAS, the average delay is reduced
by 6.30% and the average transmission times is increased by 5%.

Table 5. Delay under AAPS scheme. ݒଵ ݒଶ ݒଷ ݒସ ݒହ ݒ଺ ݒ଻ ݒ ଼ݒଽ ݒଵ଴
 ଶ଴ݒ ଵଽݒ ଵ଼ݒ ଵ଻ݒ ଵ଺ݒ ଵହݒ ଵସݒ ଵଷݒ ଵଶݒ ଵଵݒ 27 28 12 16 15 11 12 23 7 7

 ଷ଴ݒ ଶଽݒ ଶ଼ݒ ଶ଻ݒ ଶ଺ݒ ଶହݒ ଶସݒ ଶଷݒ ଶଶݒ ଶଵݒ 22 19 22 15 15 16 17 15 16 31
24 19 16 35 32 35 32 35 33 36

Since the node ݒଷ in Figure 2 adds a slot when there is not enough energy to add awake slots in
this method, the delay of ݒଷ and its descendant nodes is greatly reduced. However, even in this case,
AAPS method can still further reduce the delay than BTAS method. Since the AAPS method increases
transmission times in the nodes away from sink, thus reducing the delay, the average transmission
times is slightly more than that of BTAS, still less than that of traditional scheme and IFAS.

4.2. IFAS, BTAS, AAPS Schemes Design

In the traditional method, because the slots of the son nodes are not uniformly distributed, the
parent node can only send packets to son nodes individually when they wake up. The algorithm is
described below:

Suppose a parent node has 	ݖ	 son nodes and they have randomly generated working
slots,	{ݏଵ, ,ଶݏ …… , .{௭ݏ

Assuming that the parent node finishes receiving data packets at slot	ݏ௝, from the slot	ݏ௝ାଵ, if
there is any slot, at which there is a son node waking up, the parent node will broadcast the data.
Then the record of transmission times to this son node will add 1 (initialized to 0). The parent node
will not send the packet at this slot again when either of the following two conditions is met:

1. The transmission times to this son node reaches ௠ܶ௔௫
2. Receive ACK from the son node

One notable drawback of traditional method is that each son node has only one chance to receive
packets within a cycle and if it fails, it has to wait one cycle to try again. After observing this, we
improve it and use the IFAS method to let the son nodes inform each other of the awake slots of their

Figure 5. The added slots in the third layer (top) and the added slots in the fourth layer (below).

Table 5 shows the delay of all the nodes in the model shown in Figure 2 when AAPS is adopted
and the average delay is 21.43. The total number of deliveries is 44, with an average of 1.47. Compared
with the traditional scheme, the average delay is reduced by 53.31% and the average transmission
times is reduced by 43.46%. Compared with IFAS, the average delay is reduced by 34.00% and the
average transmission times is reduced by 18.33%. Compared with BTAS, the average delay is reduced
by 6.30% and the average transmission times is increased by 5%.

Table 5. Delay under AAPS scheme.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
7 7 23 12 11 15 16 12 28 27

v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
31 16 15 17 16 15 15 22 19 22

v21 v22 v23 v24 v25 v26 v27 v28 v29 v30
24 19 16 35 32 35 32 35 33 36

Sensors 2018, 18, 3516 13 of 44

Since the node v3 in Figure 2 adds a slot when there is not enough energy to add awake slots in
this method, the delay of v3 and its descendant nodes is greatly reduced. However, even in this case,
AAPS method can still further reduce the delay than BTAS method. Since the AAPS method increases
transmission times in the nodes away from sink, thus reducing the delay, the average transmission
times is slightly more than that of BTAS, still less than that of traditional scheme and IFAS.

4.2. IFAS, BTAS, AAPS Schemes Design

In the traditional method, because the slots of the son nodes are not uniformly distributed, the
parent node can only send packets to son nodes individually when they wake up. The algorithm is
described below:

Suppose a parent node has z son nodes and they have randomly generated working slots,
{s1, s2, , sz}.

Assuming that the parent node finishes receiving data packets at slot sj, from the slot sj+1, if there
is any slot, at which there is a son node waking up, the parent node will broadcast the data. Then the
record of transmission times to this son node will add 1 (initialized to 0). The parent node will not
send the packet at this slot again when either of the following two conditions is met:

1. The transmission times to this son node reaches Tmax

2. Receive ACK from the son node

One notable drawback of traditional method is that each son node has only one chance to receive
packets within a cycle and if it fails, it has to wait one cycle to try again. After observing this,
we improve it and use the IFAS method to let the son nodes inform each other of the awake slots of
their own. When the son node fails to receive the packet, it can wake up and try to receive the packet
again at brother nodes’ slots. The description of the algorithm is as follows:

Suppose a parent node has z son nodes and they have randomly generated working
slots, {s1, s2, , sz}.

The son nodes ask each other and record the slots later than their own. For all z nodes, the slots
they recorded are:

{s1,s2, sz},
{s2,s3, sz},
{s3,s4, sz},
......
{sz−1, sz},
{sz}
Assuming that the parent node finishes receiving data packets at slot sj, from the slot sj+1, if there

is any slot, at which there is a son node waking up, the parent node will broadcast the data. Then the
record of transmission times to this son node will add 1 (initialized to 0). The parent node will not
send the packet at this slot again when either of the following two conditions is met:

1. The transmission times to this son node reaches Tmax

2. Receive ACK from all the son nodes

For the son node vi, the slot list is {si, sz}. From the slot si, vi begins to receive the packet
and if the receiving fails, then it will wake up at the next slot in the slot list and try to receive the packet.
The son nodes will stop waking up at other slots when either of the following two conditions is met:

1. The packet is received successfully
2. It senses nothing at its own slot si

Initializing process of father node under IFAS scheme can be described by Algorithm 1.

Sensors 2018, 18, 3516 14 of 44

Algorithm 1 Initialize father node under IFAS scheme

1: Son_Count = 0
2: For each node of Son_Nodes Do
3: Add this node’s awake slot to father node’s sending slot list
4: Son_Count = Son_Count + 1
5: End for

Initializing process of son nodes under IFAS scheme can be described by Algorithm 2.

Algorithm 2 Initialize son nodes under IFAS scheme

1: For each node of Brother_Nodes Do
2: If this brother node’s awake slot > own awake slot then
3: add this brother node’s awake slot to receiving slot list
4: End if
5: End for

Working procedure of father node under IFAS scheme can be described by Algorithm 3.

Algorithm 3 Broadcast data packet under IFAS scheme

1: Success_Count = 0
2: While Success_Count < Son_Count Do
3: wait until the next slot in sending slot list
4: broadcast data packet
5: For each node of Son_Nodes Do
6: If this node receives successfully then
7: Success_Count= Success_Count + 1
8: End if
9: End for
10: End while

Working procedure of son nodes under IFAS scheme can be described by Algorithm 4.

Algorithm 4 Receive data packet under IFAS scheme

1: Success_Flag = 0, Receive_Flag = 0
2: While Receive_Flag==0 Do
3: wait until own slot
4: If this node receives successfully then
5: Success_Flag = 1, Receive_Flag = 1
6: End if
7: Else if this node receives unsuccessfully then
8: Success_Flag = 0, Receive_Flag = 1
9: End else
10: End while
11: While Success_Flag==0 Do
12: wait until the next slot in receiving slot list
13: If this node receives successfully then
14: Success_Flag = 1
15: End if
16: End while

Sensors 2018, 18, 3516 15 of 44

The IFAS method effectively makes use of the feature that the parent node sends the data packets
multiple times in a cycle, so that a son node can try to receive the data packets multiple times in a cycle.
One problem is that the last waking node cannot attempt to receive packets at other slots, so based on
IFAS, we design the BTAS method to add slots in the front of the cycle for nodes that wake up the last.
The description of the algorithm is as follows:

Suppose parent node has z son nodes and they have randomly generated working
slots, {s1, s2, , sz}.

The son nodes ask each other and record the slots later than their own. For all z nodes, the slots
they recorded are:

{s1,s2, sz},
{s2,s3, sz},
{s3,s4, sz},
......
{sz−1, sz},
{sz}
For nodes with only one slot in the slot list, they will add a wake slot at the slot s1 at which there

is a node waking up in the cycle for the first time and then tell the parent to send data to them at s1.
Then the intermediate slots are also added. Therefore, the updated slot lists are:

{s1,s2, sz},
{s2,s3, sz},
{s3,s4, sz},
......
{sz−1, sz},
{s1,s2, sz}
Assuming that the parent node finishes receiving data packets at slot sj, from the slot sj+1, if there

is any slot, at which there is a son node waking up, the parent node will broadcast the data. Then the
record of transmission times to this son node will add 1 (initialized to 0). The parent node will not
send the packet at this slot again when either of the following two conditions is met:

1. The transmission times to this son node reaches Tmax

2. Receive ACK from all the son nodes

For the son node vi, the slot list is {si, sz}. From the slot si, vi receives the packet and if the
reception fails, then it will wake up at the next slot in the slot list and try to receive the packet. The son
nodes will stop waking up at other slots when either of the following two conditions is met:

1. The packet is received successfully
2. It senses nothing at its own slot si

Initializing process of father node under BTAS scheme can be described by Algorithm 5.

Algorithm 5 Initialize father node under BTAS scheme

1: Son_Count = 0
2: For each node of Son_Nodes Do
3: Add this node’s awake slot to father node’s sending slot list
4: Son_Count = Son_Count + 1
5: End for

Initializing process of son nodes under BTAS scheme can be described by Algorithm 6.

Sensors 2018, 18, 3516 16 of 44

Algorithm 6 Initialize son nodes under BTAS scheme

1: After_Slots_Count = 0,Active_Slot = m
2: For each node of Brother_Nodes Do
3: If this brother node’s awake slot > own awake slot then
4: add this brother node’s awake slot to receiving slot list
5: After_Slots_Count = After_Slots_Count + 1
6: End if
7: End for
8:If After_Slots_Count==0 then
9: For each node of Brother_Nodes Do
10: If this brother node’s awake slot < Active_Slot then
11: Active_Slot = this brother node’s awake slot
12: End if
13: End for
14: Add Active_Slot to awake slot list
15:End if
16:Add own slot to awake slot list

Working procedure of father node under BTAS scheme can be described by Algorithm 7.

Algorithm 7 Broadcast data packet under BTAS scheme

1:Success_Count = 0
2:While Success_Count < Son_Count Do
3: wait until the next slot in sending slot list
4: broadcast data packet
5: For each node of Son_Nodes Do
6: If this node receives successfully then
7: Success_Count = Success_Count + 1
8: End if
9: End for
10: End while

Working procedure of son nodes under BTAS scheme can be described by Algorithm 8.

Algorithm 8 Receive data packet under BTAS scheme

1: Success_Flag = 0,Receive_Flag = 0
2:While Receive_Flag==0 Do
3: wait until next slot in awake slot list
4: If this node receives successfully then
5: Success_Flag = 1, Receive_Flag = 1
6: End if
7: Else if this node receives unsuccessfully then
8: Success_Flag = 0, Receive_Flag = 1
9: End else
10:End while
11: While Success_Flag==0 Do
12: wait until the next slot in receiving slot list
13: If this node receives successfully then
14: Success_Flag = 1
15: End if
16:End while

Sensors 2018, 18, 3516 17 of 44

Since the nodes away from the sink node forward less data and have a lot of energy left over, we
can add more slots to listen for packets from the parent node to minimize latency. To sum up the IFAS
and BTAS methods, it can be concluded that the earlier the son node knows that the parent starts to
transmit the data packet, the more slots of brother nodes the son node can use to receive data packets
after failure. In addition, as the number of slots with son nodes waking up increases, the parent node
will send packets more frequently and reduces latency when multiple transmission is required. AAPS
algorithm is designed according to the above two points. The description of the algorithm is as follows:

Suppose a parent node has z son nodes and they have randomly generated working
slots, {s1, s2, , sz}.

First, the son node calculates the number of slot (denoted as d) that can be added based on its
own data volume and then determines the location of the added slot in this way:

1. Calculate the number of sleeping slots, w = m− d− 1
2. Update w to average number of sleeping slots, w = w/(d− 1)
3. Starting from the slot randomly generated by the son node itself, it first adds a slot with a gap

of dwe−1, then adds another slot with a gap of dwe and so on, until the number of added slot
reaches d. If the node has reached the end of the cycle, then it will continue adding slots from the
beginning of the cycle.

After the son nodes have added slots, they will send their full slot list to the parent node.
The son nodes ask each other and record all the brothers’ slots. Thus, supposing that they

have e different awake slots, the slots stored by all nodes are {s1, s2, , se }.
Assuming that the parent node finishes receiving data packets at slot sj, from the slot sj+1, if there

is any slot, at which there is a son node waking up, the parent node will broadcast the data. Then the
record of transmission times to this son node will add 1 (initialized to 0). The parent node will not
send the packet at this slot again when either of the following two conditions is met:

1. The transmission times to this son node reaches Tmax

2. Receive ACK from all the son nodes

For son node vi, the slot list it has recorded is {s1, s2, , se }. Depending on the number of
slots it added, it begins receiving data at any slot within {s1, , sd+1}. If the reception fails, the
node will wake up again at the next slot in the slot list to try to receive data packets. The son nodes
will stop waking up at other slots when either of the following two conditions is met:

1. The packet is received successfully
2. It senses nothing at one of its own slots {s1, , sd+1}

Initializing process of father node under AAPS scheme can be described by Algorithm 9.

Algorithm 9 Initialize father node under AAPS scheme

1: Son_Count = 0
2: For each node of Son_Nodes Do
3: For each awake slot of this node Do
4: Add this slot to father node’s sending slot list
5: End for
6: Son_Count = Son_Count + 1
7: End for

Initializing process of son nodes under AAPS scheme can be described by Algorithm 10.

Sensors 2018, 18, 3516 18 of 44

Algorithm 10 Initialize son nodes under AAPS scheme

1:Max_Interval = 0, Min_Interval = 0, d = NumberOfAddedSlots, i = 0
2:Min_Interval = (m − d − 1)/(d + 1)
3:If (m − d − 1)mod(d + 1)==0 then
4: Max_Interval = Min_Interval
5:End if
6:Else
7: Max_Interval = Min_Interval + 1
8:End else
9:While i < d Do
10: If i mod 2==0 then
11: Add (OwnSlot + Min_Interval + 1) to awake slot list
12: End if
13: Else
14: Add (OwnSlot + Max_Interval + 1) to awake slot list
15: End else
16: i = i + 1
17:End while
18:For each node of Brother_Nodes Do
19: For each awake slot of this brother node Do
20: add this awake slot to receiving slot list
21: End for
22:End for

Working procedure of father node under AAPS scheme can be described by Algorithm 11.

Algorithm 11 Broadcast data packet under AAPS scheme

1:Success_Count = 0
2:While Success_Count < Son_Count Do
3: wait until the next slot in sending slot list
4: broadcast data packet
5: For each node of Son_Nodes Do
6: If this node receives successfully then
7: Success_Count = Success_Count + 1
8: End if
9: End for
10: End while

Working procedure of son nodes under AAPS scheme can be described by Algorithm 12.

Sensors 2018, 18, 3516 19 of 44

Algorithm 12 Receive data packet under AAPS scheme

1: Success_Flag = 0,Receive_Flag = 0
2:While Receive_Flag==0 Do
3: wait until next slot in awake slot list
4: If this node receives successfully then
5: Success_Flag = 1, Receive_Flag = 1
6: End if
7: Else if this node receives unsuccessfully then
8: Success_Flag = 0, Receive_Flag = 1
9: End else
10:End while
11: While Success_Flag==0 Do
12: wait until the next slot in receiving slot list
13: If this node receives successfully then
14: Success_Flag = 1
15: End if
16:End while

5. Parameter Optimization and Performance Analysis

5.1. Calculations of Energy and the Number of Slots that Can Be Added

Definition 4. Empty delay is the total number of slots between the time the parent is ready and its first attempt
to send packets to the son.

Definition 5. Transmission delay is the total number of slots remaining in the total delay when empty delay
is removed.

As shown in Figure 6, the parent node is ready at slot 0 and the son node wakes up for the first
time at slot 2. According to definition 4, in this example, the empty delay is 2. The son node wakes up
for three times each at slot 2, slot 4 and slot 7. It fails at the first two slots and succeeds at the last slot.
Therefore, according to definition 5, in this example, the transmission delay is 5.

Sensors 2018, 18, x FOR PEER REVIEW 18 of 42

Working procedure of son nodes under AAPS scheme can be described by Algorithm 12.

Algorithm 12 Receive data packet under AAPS scheme
1: Success_Flag = 0,Receive_Flag = 0
2:While Receive_Flag==0 Do
3: wait until next slot in awake slot list
4: If this node receives successfully then
5: Success_Flag = 1, Receive_Flag = 1
6: End if
7: Else if this node receives unsuccessfully then
8: Success_Flag = 0, Receive_Flag = 1
9: End else
10:End while
11: While Success_Flag==0 Do
12: wait until the next slot in receiving slot list
13: If this node receives successfully then
14: Success_Flag = 1
15: End if
16:End while

5. Parameter Optimization and Performance Analysis

5.1. Calculations of Energy and the Number of Slots that Can Be Added

Definition 4. Empty delay is the total number of slots between the time the parent is ready and its first attempt
to send packets to the son.

Definition 5. Transmission delay is the total number of slots remaining in the total delay when empty delay
is removed.

As shown in Figure 6, the parent node is ready at slot 0 and the son node wakes up for the first
time at slot 2. According to definition 4, in this example, the empty delay is 2. The son node wakes
up for three times each at slot 2, slot 4 and slot 7. It fails at the first two slots and succeeds at the last
slot. Therefore, according to definition 5, in this example, the transmission delay is 5.

Father

Son

Father is ready

Father sends code

Son receives and
fails

Son receives and
succeeds

0 1 2 3 4 5 6 7

Figure 6. The example of Definitions 4 and 5.

Theorem 1. Given the single transmission success rate	 ௧ܲ௥௔௡௦ and the threshold value of total transmission
success rate		 ௧ܲ௛, the maximum transmission times is	 ௠ܶ௔௫ = ቒ ௟௢௚(ଵି௉೟೓)௟௢௚(ଵି௉೟ೝೌ೙ೞ)ቓ.
Proof. ௧ܲ௥௔௡௦ represents the success rate of a single transmission, so (1 − ௧ܲ௥௔௡௦) represents the
failure rate of a single transmission. Since the packet is sent for 	 ௠ܶ௔௫ times, 	(1 − ௧ܲ௥௔௡௦) ೘்ೌೣ
represents the failure rate after 	 ௠ܶ௔௫ transmissions and 1 − (1 − ௧ܲ௥௔௡௦) ೘்ೌೣ represents the success
rate after 	 ௠ܶ௔௫ transmissions.

Figure 6. The example of Definitions 4 and 5.

Theorem 1. Given the single transmission success rate Ptrans and the threshold value of total transmission
success rate Pth, the maximum transmission times is Tmax = d log(1−Pth)

log(1−Ptrans)
e.

Proof. Ptrans represents the success rate of a single transmission, so (1− Ptrans) represents the failure
rate of a single transmission. Since the packet is sent for Tmax times, (1− Ptrans)

Tmax represents
the failure rate after Tmax transmissions and 1 − (1− Ptrans)

Tmax represents the success rate after
Tmax transmissions.

Sensors 2018, 18, 3516 20 of 44

In order to make the success rate greater than the threshold Pth, the following inequality should
be satisfied:

1− (1− Ptrans)
Tmax ≥ Pth

Solve this inequality and we get:

Tmax ≥
log(1− Pth)

log(1− Ptrans)
.

Obviously, the transmission times is the smallest integer that satisfies this inequality, so:

Tmax = d log(1− Pth)

log(1− Ptrans)
e.

�
As shown in Figure 7, the x-coordinate is the transmission times and the y-coordinate is the total

transmission success rate. As the transmission times increases, the total transmission success rate
increases. When the single transmission success rate is set to 0.5, as shown in the figure, when the
transmission times are over 6, the total transmission success rate raised by the increase of transmission
times is very small but it consumes more energy. Therefore, setting the maximum transmission times
can reduce energy consumption under the condition that the total success rate is almost not affected.

Sensors 2018, 18, x FOR PEER REVIEW 19 of 42

In order to make the success rate greater than the threshold	 ௧ܲ௛, the following inequality should
be satisfied: 1 − (1 − ௧ܲ௥௔௡௦) ೘்ೌೣ ≥ ௧ܲ௛.

Solve this inequality and we get:

௠ܶ௔௫ ≥ ୪୭୥(ଵି௉೟೓)୪୭୥(ଵି௉೟ೝೌ೙ೞ).

Obviously, the transmission times is the smallest integer that satisfies this inequality, so: 	 ௠ܶ௔௫ = ቒ ୪୭୥(ଵି௉೟೓)୪୭୥(ଵି௉೟ೝೌ೙ೞ)ቓ. □

□

As shown in Figure 7, the x-coordinate is the transmission times and the y-coordinate is the total
transmission success rate. As the transmission times increases, the total transmission success rate
increases. When the single transmission success rate is set to 0.5, as shown in the figure, when the
transmission times are over 6, the total transmission success rate raised by the increase of
transmission times is very small but it consumes more energy. Therefore, setting the maximum
transmission times can reduce energy consumption under the condition that the total success rate is
almost not affected.

0 2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1.0

Total Success Rate

Transmission Times
Figure 7. The example of Theorem 1 (௧ܲ௥௔௡௦	= 0.5).

Theorem 2. Given the transmission layer 	݅ , then the number of the total forwarded data packets
is	௡൫ோమି௥మ൯ିସ௡௥మ൫௜మି௜൯ோమ .

Proof. As shown in Figure 8, the inner radius of the annular transmission layer	݅	is	(2݅ − and the ݎ(1
external radius is 	(2݅ + ݎ(1 , therefore, according to the formula of circular area, the area of
transmission layer 	݅	 is 	π × ቀ൫(2݅ + ൯ଶݎ(1 − ൫(2݅ − ൯ଶቁݎ(1 , since the node density is ߩ	 = ௡గோమ , after

simplification, the number of nodes in this layer is	଼௡௥మோమ × ݅.
Since the radius of the whole area with nodes is 	ܴ , there are 	ோି௥ଶ௥ − (ܴ − 	ݎ2%(ݎ complete

transmission layers and an incomplete one with the width of	(ܴ − ݅ Since there is a total of .ݎ2%(ݎ −1 layers before the ݅௧௛ layer, the total number of nodes in these ݅ − 1 layers is 	∑ ଼௡௥మோమ × ݆௝ୀ௜ିଵ௝ୀଵ ,

simplified to	ସ௡௥మ൫௜మି௜൯ோమ . As all the layers form a ring with an inner radius of	ݎ and an external radius

Figure 7. The example of Theorem 1 (Ptrans = 0.5).

Theorem 2. Given the transmission layer, then the number of the total forwarded data packets

is
n(R2−r2)−4nr2(i2−i)

R2 .

Proof. As shown in Figure 8, the inner radius of the annular transmission layer i is (2i− 1)r and the
external radius is (2i + 1)r, therefore, according to the formula of circular area, the area of transmission
layer i is π ×

(
((2i + 1)r)2 − ((2i− 1)r)2

)
, since the node density is ρ = n

πR2 , after simplification, the

number of nodes in this layer is 8nr2

R2 × i.

Sensors 2018, 18, 3516 21 of 44

Sensors 2018, 18, x FOR PEER REVIEW 20 of 42

of	ܴ, the total number of nodes is	௡൫ோమି௥మ൯ோమ . Therefore, the total number of data packets forwarded by

the ݅௧௛ layer is	௡൫ோమି௥మ൯ିସ௡௥మ൫௜మି௜൯ோమ . □

第1层第1层
2r2r2rr

Base

Layer 1

Layer 2

Layer 3

Figure 8. Networks layer model.

As shown in Figure 9, the x-coordinate is the transmission layer and the y-coordinate is the
number of forwarded data packets. From the figure, it can be concluded that, the further layer is away
from the sink node, the less data packets it is responsible to forward, which is because: the nodes near
the sink node need to forward not only the data of its own but also all the data from external layers.
Therefore, the nearer node is from the sink node, the bigger is the number of data forwarded; the
further node is away from the sink node, the smaller is the number of data forwarded.

1 2 3 4 5

20

40

60

80

100

Number Of Packets

Number Of Layer
Figure 9.Comparison of the packets forwarded by each layer (n = 100, R = 100, r = 10).

Theorem 3. Given the transmission layer ݅, supposing the data packets generated by each node are of the same
size and the time of collecting and forwarding data is as long as a cycle, then, there is energy surplus, which is (௜ିଵ)(ா೟ೝೌ೙ೞାாೝ೐೎೐೔ೡ೐)ଶ per node in layer ݅. The additional energy can be used to add slots, ultimately, ଽଶ (݅ − 1)
slots can be added.

Proof. According to Theorem 2, given the layer 	݅ , the number of forwarded packets
is	௡൫ோమି௥మ൯ିସ௡௥మ൫௜మି௜൯ோమ , taking the derivative of which, we get	ିସ௡௥మ(ଶ௜ିଵ)ோమ . Since	݅ ≥ 1, the derivative is

Figure 8. Networks layer model.

Since the radius of the whole area with nodes is R, there are R−r
2r − (R− r)%2r complete

transmission layers and an incomplete one with the width of (R− r)%2r. Since there is a total
of i − 1 layers before the ith layer, the total number of nodes in these i − 1 layers is ∑

j=i−1
j=1

8nr2

R2 × j,

simplified to
4nr2(i2−i)

R2 . As all the layers form a ring with an inner radius of r and an external radius

of R, the total number of nodes is
n(R2−r2)

R2 . Therefore, the total number of data packets forwarded by

the ith layer is
n(R2−r2)−4nr2(i2−i)

R2 . �

As shown in Figure 9, the x-coordinate is the transmission layer and the y-coordinate is the
number of forwarded data packets. From the figure, it can be concluded that, the further layer is away
from the sink node, the less data packets it is responsible to forward, which is because: the nodes
near the sink node need to forward not only the data of its own but also all the data from external
layers. Therefore, the nearer node is from the sink node, the bigger is the number of data forwarded;
the further node is away from the sink node, the smaller is the number of data forwarded.

Sensors 2018, 18, x FOR PEER REVIEW 20 of 42

of	ܴ, the total number of nodes is	௡൫ோమି௥మ൯ோమ . Therefore, the total number of data packets forwarded by

the ݅௧௛ layer is	௡൫ோమି௥మ൯ିସ௡௥మ൫௜మି௜൯ோమ . □

第1层第1层
2r2r2rr

Base

Layer 1

Layer 2

Layer 3

Figure 8. Networks layer model.

As shown in Figure 9, the x-coordinate is the transmission layer and the y-coordinate is the
number of forwarded data packets. From the figure, it can be concluded that, the further layer is away
from the sink node, the less data packets it is responsible to forward, which is because: the nodes near
the sink node need to forward not only the data of its own but also all the data from external layers.
Therefore, the nearer node is from the sink node, the bigger is the number of data forwarded; the
further node is away from the sink node, the smaller is the number of data forwarded.

1 2 3 4 5

20

40

60

80

100

Number Of Packets

Number Of Layer
Figure 9.Comparison of the packets forwarded by each layer (n = 100, R = 100, r = 10).

Theorem 3. Given the transmission layer ݅, supposing the data packets generated by each node are of the same
size and the time of collecting and forwarding data is as long as a cycle, then, there is energy surplus, which is (௜ିଵ)(ா೟ೝೌ೙ೞାாೝ೐೎೐೔ೡ೐)ଶ per node in layer ݅. The additional energy can be used to add slots, ultimately, ଽଶ (݅ − 1)
slots can be added.

Proof. According to Theorem 2, given the layer 	݅ , the number of forwarded packets
is	௡൫ோమି௥మ൯ିସ௡௥మ൫௜మି௜൯ோమ , taking the derivative of which, we get	ିସ௡௥మ(ଶ௜ିଵ)ோమ . Since	݅ ≥ 1, the derivative is

Figure 9. Comparison of the packets forwarded by each layer (n = 100, R = 100, r = 10).

Sensors 2018, 18, 3516 22 of 44

Theorem 3. Given the transmission layer i, supposing the data packets generated by each node are of the same
size and the time of collecting and forwarding data is as long as a cycle, then, there is energy surplus, which is
(i−1)(Etrans+Ereceive)

2 per node in layer i. The additional energy can be used to add slots, ultimately, 9
2 (i− 1) slots

can be added.

Proof. According to Theorem 2, given the layer i, the number of forwarded packets

is
n(R2−r2)−4nr2(i2−i)

R2 , taking the derivative of which, we get −4nr2(2i−1)
R2 . Since i ≥ 1, the derivative

is constantly smaller than 0. Therefore, the further layer is away from the root, the less packets it

forwards. When i = 1, maximum packets are forwarded, which is
n(R2−r2)

R2 . Thus, compared with

the maximum, each layer forwarded
4nr2(i2−i)

R2 less packets. Since the energy consumpted to process
the packet is Etrans + Ereceive, the energy surplus of this layer is (Etrans + Ereceive). Because the number
of nodes in this layer is 8nr2

R2 × i, the energy left over for each node in this layer is: (i−1)(Etrans+Ereceive)
2 .

Thus, the number of slots added at most is:

(i− 1)(Etrans + Ereceive)

2Eawake
=

9
2
(i− 1).

�

Theorem 4. Since son node wakes up randomly at one of the slots in a cycle, the expected empty delay is m−1
2 .

Using AAPS, if d slots are added, the expected empty delay is accordingly
m

d+1−1
2 . The more slots are added, the

smaller is the expected empty delay. At most m− 1 slots can be added, which can achieve the smallest empty
delay, which is 0.

Proof. At first, son node only wakes up at one of m slots in a cycle, while the parent node can be ready
to send the packet at any slot. Supposing parent node is ready at s f ather and son node wake up at sson,
the empty delay is thus: {

sson − s f ather , sson ≥ s f ather
sson + m− s f ather , sson < s f ather

.

The expectation of which is 1
m ∑sson=m−1

sson=0

(
1
m ∑

s f ather=sson
s f ather=0

(
sson − s f ather

)
+ 1

m ∑
s f ather=m−1
s f ather=sson+1

(
sson + m− s f ather

))
.

After simplification, we get m−1
2 . After d slots are added, similar to the deduction above, the

expectation of empty delay is
m

d+1−1
2 , taking the derivative of which, we get − m

2(d+1)2 , which is

constantly smaller than 0. Thus, the more are the slots added, the smaller is the expectation of
empty delay. Since d ≤ m− 1, the minimum value 0 is reached when d = m− 1. In this circumstance,
son node never sleeps, therefore parent node can broadcast the packet anytime it wishes. �

Shown in Figure 10 is the example of the effect of added slots on empty delay. The number in the
figure denotes the empty delay when parent node is ready at this slot. When d = 0, namely when no
slots are added, parent node has to wait at most 9 slots before son node wakes up and the average
delay is 9/2; with one slot added, the maximum empty delay has been reduced to 4 and the average of
delay is 2; with 4 slots added, the maximum empty delay has been reduced to 1 and the average delay
is 1/2; with 9 slots added, the cycle is completely covered by son nodes and the empty delay is 0.

Sensors 2018, 18, 3516 23 of 44

Sensors 2018, 18, x FOR PEER REVIEW 21 of 42

constantly smaller than 0. Therefore, the further layer is away from the root, the less packets it
forwards. When		݅ = 1, maximum packets are forwarded, which is	௡൫ோమି௥మ൯ோమ . Thus, compared with the

maximum, each layer forwarded		ସ௡௥మ൫௜మି௜൯ோమ less packets. Since the energy consumpted to process the
packet is	ܧ௧௥௔௡௦ + ௧௥௔௡௦ܧ)	௥௘௖௘௜௩௘, the energy surplus of this layer isܧ + ௥௘௖௘௜௩௘). Because the numberܧ
of nodes in this layer is	଼௡௥మோమ × ݅, the energy left over for each node in this layer is: (௜ିଵ)(ா೟ೝೌ೙ೞାாೝ೐೎೐೔ೡ೐)ଶ .
Thus, the number of slots added at most is: (௜ିଵ)(ா೟ೝೌ೙ೞାாೝ೐೎೐೔ೡ೐)ଶாೌೢೌೖ೐ = ଽଶ (݅ − 1).

□

Theorem 4. Since son node wakes up randomly at one of the slots in a cycle, the expected empty delay is		௠ିଵଶ .

Using AAPS, if	݀	slots are added, the expected empty delay is accordingly		 ೘೏శభିଵଶ . The more slots are added, the
smaller is the expected empty delay. At most	݉ − 1 slots can be added, which can achieve the smallest empty
delay, which is 0.

Proof. At first, son node only wakes up at one of	݉	slots in a cycle, while the parent node can be ready
to send the packet at any slot. Supposing parent node is ready at	ݏ௙௔௧௛௘௥ and son node wake up at	ݏ௦௢௡,
the empty delay is thus: ൜ ௦௢௡ݏ − ,	௙௔௧௛௘௥ݏ ௦௢௡ݏ	 ≥ ௦௢௡ݏ௙௔௧௛௘௥ݏ + ݉ − ,	௙௔௧௛௘௥ݏ ௦௢௡ݏ	 < .௙௔௧௛௘௥ݏ

The expectation of which is ଵ	௠ ∑ ቀଵ௠∑ ൫ݏ௦௢௡ − ௙௔௧௛௘௥൯ݏ +	 ଵ௠∑ ൫ݏ௦௢௡ + ݉ − ௙௔௧௛௘௥൯௦೑ೌ೟೓೐ೝୀ௠ିଵ௦೑ೌ೟೓೐ೝసೞೞ೚೙శభ௦೑ೌ೟೓೐ೝస௦ೞ೚೙௦೑ೌ೟೓೐ೝసబݏ ቁ௦ೞ೚೙ୀ௠ିଵ௦ೞ೚೙ୀ଴ .

After simplification, we get	௠ିଵଶ . After	݀	slots are added, similar to the deduction above, the

expectation of empty delay is 	 ೘೏శభିଵଶ , taking the derivative of which, we get 	− ௠ଶ(ௗାଵ)మ , which is

constantly smaller than 0. Thus, the more are the slots added, the smaller is the expectation of empty
delay. Since	݀ ≤ ݉ − 1, the minimum value 0 is reached when	݀ = ݉ − 1. In this circumstance, son
node never sleeps, therefore parent node can broadcast the packet anytime it wishes. □

Shown in Figure 10 is the example of the effect of added slots on empty delay. The number in
the figure denotes the empty delay when parent node is ready at this slot. When d = 0, namely when
no slots are added, parent node has to wait at most 9 slots before son node wakes up and the average
delay is 9/2; with one slot added, the maximum empty delay has been reduced to 4 and the average
of delay is 2; with 4 slots added, the maximum empty delay has been reduced to 1 and the average
delay is 1/2; with 9 slots added, the cycle is completely covered by son nodes and the empty delay is
0.

3 2 14 9 8 70 6 5

3 2 14 4 3 20 1 0

1 0 10 1 0 10 0 1

0 0 00 0 0 00 0 0

d=0

d=1

d=4

d=9

Sleep

Awake

Figure 10. Example of the effect of added slots on empty delay (m = 10).

Shown in Figure 11 is the change trend of the effect of added slots on empty delay. The abscissa
is the number of added slots and the ordinate is the corresponding empty delay. The more slots are
added, the smaller is the expectation of empty delay, which is finally reduced to 0. At first, increasing

Figure 10. Example of the effect of added slots on empty delay (m = 10).

Shown in Figure 11 is the change trend of the effect of added slots on empty delay. The abscissa
is the number of added slots and the ordinate is the corresponding empty delay. The more slots are
added, the smaller is the expectation of empty delay, which is finally reduced to 0. At first, increasing
the number of slots has a very good effect. Adding one slot reduces the delay expectation by half but
as the number of slots increases, the reduction becomes slower and slower.

Sensors 2018, 18, x FOR PEER REVIEW 22 of 42

the number of slots has a very good effect. Adding one slot reduces the delay expectation by half but
as the number of slots increases, the reduction becomes slower and slower.

0 2 4 6 8 10

0

1

2

3

4

5
Empty Delay Expectation

Number Of Added Slots
Figure 11. The trend chart of the effect of added slots on empty delay (m = 10).

Theorem 5. The minimum transmission delay exists.

Proof. According to Definition 5, in networks without transmission failure, the transmission delay is
0, while in networks with transmission failure, the transmission delay is mostly decided by the slot
at which parent node is ready. Apparently, when parent node broadcasts at every slot and son node
wakes up at every slot, the transmission delay is the minimum. □

Shown in Figure 12 is the distribution of slots when nodes have the minimum transmission
delay. Since the node wakes up at each slot, when the node fails to receive the code, it can immediately
wake up at the next slot and receive the code again, thus obtaining the shortest transmission delay.

Send

Awake

Father

Son

Figure 12. Example of slots when transmission is the minimum (m = 10).

Theorem 6. With AAPS, minimum transmission delay can be achieved. Given the number of son nodes
(denoted as	݆), at the worst condition, a total of	݉ − 1	slots should be added, on average	௠ିଵ௝ 	slots should be

added by each node. At the best condition, a total of	݉ − ݆	slots should be added, on average	௠௝ 	slots should be

added by each node. Let	݅	denote the transmission layer, when	݅ ≥ ଶ(௠ିଵ)ଽ௝ + 1, the energy surplus is enough to

guarantee minimum transmission delay.

Proof. According to Theorem 5, the minimum transmission delay exists. The distribution of slots
when minimum transmission delay is achieved is shown in Figure 12. With AAPS, the slots are added
and when node starts receiving code, since it can make use of brother nodes’ slots, the expectation of
transmission delay is decided by the single transmission success rate and the coverage of slots in
cycle. When the slots of all the son nodes cover the cycle, as shown in Figure 13, the minimum
transmission delay is achieved. In this circumstance, adding more slots can no longer reduce
transmission delay. According to Theorem 4, when the total number of added slots is smaller
than	݉ − 1, the more slots are added, the smaller is the empty delay.

In AAPS, since the node makes use of brother nodes’ slots, it can wake up as frequently as
possible in a cycle to receive data packet and reduce transmission delay. However, when all the son

Figure 11. The trend chart of the effect of added slots on empty delay (m = 10).

Theorem 5. The minimum transmission delay exists.

Proof. According to Definition 5, in networks without transmission failure, the transmission delay is
0, while in networks with transmission failure, the transmission delay is mostly decided by the slot
at which parent node is ready. Apparently, when parent node broadcasts at every slot and son node
wakes up at every slot, the transmission delay is the minimum. �

Shown in Figure 12 is the distribution of slots when nodes have the minimum transmission delay.
Since the node wakes up at each slot, when the node fails to receive the code, it can immediately wake
up at the next slot and receive the code again, thus obtaining the shortest transmission delay.

Sensors 2018, 18, x FOR PEER REVIEW 22 of 42

the number of slots has a very good effect. Adding one slot reduces the delay expectation by half but
as the number of slots increases, the reduction becomes slower and slower.

0 2 4 6 8 10

0

1

2

3

4

5
Empty Delay Expectation

Number Of Added Slots
Figure 11. The trend chart of the effect of added slots on empty delay (m = 10).

Theorem 5. The minimum transmission delay exists.

Proof. According to Definition 5, in networks without transmission failure, the transmission delay is
0, while in networks with transmission failure, the transmission delay is mostly decided by the slot
at which parent node is ready. Apparently, when parent node broadcasts at every slot and son node
wakes up at every slot, the transmission delay is the minimum. □

Shown in Figure 12 is the distribution of slots when nodes have the minimum transmission
delay. Since the node wakes up at each slot, when the node fails to receive the code, it can immediately
wake up at the next slot and receive the code again, thus obtaining the shortest transmission delay.

Send

Awake

Father

Son

Figure 12. Example of slots when transmission is the minimum (m = 10).

Theorem 6. With AAPS, minimum transmission delay can be achieved. Given the number of son nodes
(denoted as	݆), at the worst condition, a total of	݉ − 1	slots should be added, on average	௠ିଵ௝ 	slots should be

added by each node. At the best condition, a total of	݉ − ݆	slots should be added, on average	௠௝ 	slots should be

added by each node. Let	݅	denote the transmission layer, when	݅ ≥ ଶ(௠ିଵ)ଽ௝ + 1, the energy surplus is enough to

guarantee minimum transmission delay.

Proof. According to Theorem 5, the minimum transmission delay exists. The distribution of slots
when minimum transmission delay is achieved is shown in Figure 12. With AAPS, the slots are added
and when node starts receiving code, since it can make use of brother nodes’ slots, the expectation of
transmission delay is decided by the single transmission success rate and the coverage of slots in
cycle. When the slots of all the son nodes cover the cycle, as shown in Figure 13, the minimum
transmission delay is achieved. In this circumstance, adding more slots can no longer reduce
transmission delay. According to Theorem 4, when the total number of added slots is smaller
than	݉ − 1, the more slots are added, the smaller is the empty delay.

In AAPS, since the node makes use of brother nodes’ slots, it can wake up as frequently as
possible in a cycle to receive data packet and reduce transmission delay. However, when all the son

Figure 12. Example of slots when transmission is the minimum (m = 10).

Sensors 2018, 18, 3516 24 of 44

Theorem 6. With AAPS, minimum transmission delay can be achieved. Given the number of son nodes
(denoted as j), at the worst condition, a total of m− 1 slots should be added, on average m−1

j slots should be
added by each node. At the best condition, a total of m− j slots should be added, on average m

j slots should be

added by each node. Let i denote the transmission layer, when i ≥ 2(m−1)
9j + 1, the energy surplus is enough to

guarantee minimum transmission delay.

Proof. According to Theorem 5, the minimum transmission delay exists. The distribution of slots
when minimum transmission delay is achieved is shown in Figure 12. With AAPS, the slots are added
and when node starts receiving code, since it can make use of brother nodes’ slots, the expectation of
transmission delay is decided by the single transmission success rate and the coverage of slots in cycle.
When the slots of all the son nodes cover the cycle, as shown in Figure 13, the minimum transmission
delay is achieved. In this circumstance, adding more slots can no longer reduce transmission delay.
According to Theorem 4, when the total number of added slots is smaller than m− 1, the more slots
are added, the smaller is the empty delay.

Sensors 2018, 18, x FOR PEER REVIEW 23 of 42

nodes share the same slots, as shown in Figure 14, they can not use each other’s slots to try receiving
code, therefore this is the worst case for AAPS.

Assuming there are	݆	son ndoes, in order to completely cover all the slots in a cycle, in the worst
scenario described above, since there are	݉	slots, all the nodes have to add a total of	݉ − 1	slots, ௠ିଵ௝ 	slots	per node. In the best scenario, where all the son nodes’ slots are different, all the nodes only

need to add	݉ − ݆	slots, averagely ௠ି௝௝ per node. Since the added slots can be at the same position,

all the node should have one redundant slot added, therefore, they should add		௠௝ 		slots individually,

so that minimum transmission delay can be reached at most cases.
According to Theorem 3, given the layer	݅, at most	ଽଶ (݅ − 1)	slots can be added by each node in

this layer. Assuming there are	݆	son nodes, as proved before, at most	௠ିଵ௝ slots need to be added to

guarantee minimum transmission delay. Therefore, when	ଽଶ (݅ − 1) ≥ ௠ିଵ௝ , minimum transmission

delay can be achieved, the inequality above can be simplified to	݅ ≥ ଶ(௠ିଵ)ଽ௝ + 1. □

V1

V2

V3

0 1 2 3 4 5 6 7

Figure 13. Minimum transmission delay model.

V1

V2

V3

0 1 2 3 4 5 6 7

Figure 14. Model of son nodes’ having the same slots.

5.2. Delay Calculation

Theorem 7. During the initialization, supposing there are	݇	son nodes, then the number of slots with nodes

waking up is expected to be	݉ × ൬1 − ቀ1 − ଵ௠ቁ௞൰ and on average ௞௠×ቆଵିቀଵି భ೘ቁೖቇ	nodes wake up in each of these

slots, the expected slots node can use to add additional awake slot in a cycle is	௠×ቆଵିቀଵିభ೘ቁೖቇିଵଶ , the slot with

node waking up for the first time is expected to be௠ିଵଶ and the average interval is	 ቀଵି భ೘ቁೖ௠×ቆଵିቀଵିభ೘ቁೖቇ.
Proof. Let 	݂(݇)	denote the number of slots with node waking up after the ݇௧௛	node is added.
Obviously,	݂(1) = 1. If the added node wakes up at the slot used by previous nodes, then the number
of used slots is not changed, otherwise, the number of added slots should be added 1.
Therefore, 	݂(݇ + 1) = ௙(௞)௠ × ݂(݇) + ௠ି௙(௞)௠ × (݂(݇) + 1) , after simplification, we can get 	݂(݇ + 1) =௠ିଵ௠ × ݂(݇) + 1 . Since 	݂(1) = 1 , using mathematical induction, we can get 	݂(݇) = ݉ × ൬1 − ቀ1 −ଵ௠ቁ௞൰ . Because there are 	݇	son nodes, 	 ௞௙(௞) = ௞௠×ቆଵିቀଵି భ೘ቁೖቇ which is the average number of nodes

waking up in a slot. According to the symmetry, the expected number of slots when parent node

Figure 13. Minimum transmission delay model.

In AAPS, since the node makes use of brother nodes’ slots, it can wake up as frequently as possible
in a cycle to receive data packet and reduce transmission delay. However, when all the son nodes
share the same slots, as shown in Figure 14, they can not use each other’s slots to try receiving code,
therefore this is the worst case for AAPS.

Sensors 2018, 18, x FOR PEER REVIEW 23 of 42

nodes share the same slots, as shown in Figure 14, they can not use each other’s slots to try receiving
code, therefore this is the worst case for AAPS.

Assuming there are	݆	son ndoes, in order to completely cover all the slots in a cycle, in the worst
scenario described above, since there are	݉	slots, all the nodes have to add a total of	݉ − 1	slots, ௠ିଵ௝ 	slots	per node. In the best scenario, where all the son nodes’ slots are different, all the nodes only

need to add	݉ − ݆	slots, averagely ௠ି௝௝ per node. Since the added slots can be at the same position,

all the node should have one redundant slot added, therefore, they should add		௠௝ 		slots individually,

so that minimum transmission delay can be reached at most cases.
According to Theorem 3, given the layer	݅, at most	ଽଶ (݅ − 1)	slots can be added by each node in

this layer. Assuming there are	݆	son nodes, as proved before, at most	௠ିଵ௝ slots need to be added to

guarantee minimum transmission delay. Therefore, when	ଽଶ (݅ − 1) ≥ ௠ିଵ௝ , minimum transmission

delay can be achieved, the inequality above can be simplified to	݅ ≥ ଶ(௠ିଵ)ଽ௝ + 1. □

V1

V2

V3

0 1 2 3 4 5 6 7

Figure 13. Minimum transmission delay model.

V1

V2

V3

0 1 2 3 4 5 6 7

Figure 14. Model of son nodes’ having the same slots.

5.2. Delay Calculation

Theorem 7. During the initialization, supposing there are	݇	son nodes, then the number of slots with nodes

waking up is expected to be	݉ × ൬1 − ቀ1 − ଵ௠ቁ௞൰ and on average ௞௠×ቆଵିቀଵି భ೘ቁೖቇ	nodes wake up in each of these

slots, the expected slots node can use to add additional awake slot in a cycle is	௠×ቆଵିቀଵିభ೘ቁೖቇିଵଶ , the slot with

node waking up for the first time is expected to be௠ିଵଶ and the average interval is	 ቀଵି భ೘ቁೖ௠×ቆଵିቀଵିభ೘ቁೖቇ.
Proof. Let 	݂(݇)	denote the number of slots with node waking up after the ݇௧௛	node is added.
Obviously,	݂(1) = 1. If the added node wakes up at the slot used by previous nodes, then the number
of used slots is not changed, otherwise, the number of added slots should be added 1.
Therefore, 	݂(݇ + 1) = ௙(௞)௠ × ݂(݇) + ௠ି௙(௞)௠ × (݂(݇) + 1) , after simplification, we can get 	݂(݇ + 1) =௠ିଵ௠ × ݂(݇) + 1 . Since 	݂(1) = 1 , using mathematical induction, we can get 	݂(݇) = ݉ × ൬1 − ቀ1 −ଵ௠ቁ௞൰ . Because there are 	݇	son nodes, 	 ௞௙(௞) = ௞௠×ቆଵିቀଵି భ೘ቁೖቇ which is the average number of nodes

waking up in a slot. According to the symmetry, the expected number of slots when parent node

Figure 14. Model of son nodes’ having the same slots.

Assuming there are j son ndoes, in order to completely cover all the slots in a cycle, in the worst
scenario described above, since there are m slots, all the nodes have to add a total of m − 1 slots,
m−1

j slots per node. In the best scenario, where all the son nodes’ slots are different, all the nodes only

need to add m− j slots, averagely m−j
j per node. Since the added slots can be at the same position,

all the node should have one redundant slot added, therefore, they should add m
j slots individually,

so that minimum transmission delay can be reached at most cases.
According to Theorem 3, given the layer i, at most 9

2 (i− 1) slots can be added by each node in
this layer. Assuming there are j son nodes, as proved before, at most m−1

j slots need to be added to

guarantee minimum transmission delay. Therefore, when 9
2 (i− 1) ≥ m−1

j , minimum transmission

delay can be achieved, the inequality above can be simplified to i ≥ 2(m−1)
9j + 1. �

Sensors 2018, 18, 3516 25 of 44

5.2. Delay Calculation

Theorem 7. During the initialization, supposing there are k son nodes, then the number of slots with nodes

waking up is expected to be m×
(

1−
(

1− 1
m

)k
)

and on average k
m×

(
1−(1− 1

m)
k) nodes wake up in each of

these slots, the expected slots node can use to add additional awake slot in a cycle is
m×

(
1−(1− 1

m)
k)−1

2 , the slot

with node waking up for the first time is expected to be m−1
2 and the average interval is (1− 1

m)
k

m×
(

1−(1− 1
m)

k) .

Proof. Let f (k) denote the number of slots with node waking up after the kth node is added.
Obviously, f (1) = 1. If the added node wakes up at the slot used by previous nodes, then
the number of used slots is not changed, otherwise, the number of added slots should be
added 1. Therefore, f (k + 1) = f (k)

m × f (k) + m− f (k)
m × (f (k) + 1), after simplification, we can

get f (k + 1) = m−1
m × f (k) + 1. Since f (1) = 1, using mathematical induction, we can get f (k) =

m ×
(

1−
(

1− 1
m

)k
)

. Because there are k son nodes, k
f (k) = k

m×
(

1−(1− 1
m)

k) which is the average

number of nodes waking up in a slot. According to the symmetry, the expected number of slots
when parent node broadcasts after every node is the same with that before every node and the sum
of them is the expected number of slots with node waking up minus one. Therefore, the number

of slots when parent node broadcasts after every node is
m×

(
1−(1− 1

m)
k)−1

2 . Since the probability of
waking up in a slot is equal, in a cycle, the slot with node waking up for the first time is expected to

be 1
m ∑i=m−1

i=0 i = m−1
2 . Since there are m×

(
1−

(
1− 1

m

)k
)

awake slots in a cycle, there are
(

1− 1
m

)k

empty slots and the average interval is (1− 1
m)

k

m×
(

1−(1− 1
m)

k) . �

Figure 15 shows an example of Theorem 7. Because there are only two slots, there are only two
possible cases of node’s waking up as shown in the figure where i = 1. When i = 2, there are four
possible cases as shown in the figure. When the number of slots is 2 and the number of node is 1, the
expectation of total number of slots is 3/2.

Sensors 2018, 18, x FOR PEER REVIEW 24 of 42

broadcasts after every node is the same with that before every node and the sum of them is the
expected number of slots with node waking up minus one. Therefore, the number of slots when

parent node broadcasts after every node is		௠×ቆଵିቀଵି భ೘ቁೖቇିଵଶ . Since the probability of waking up in a
slot is equal, in a cycle, the slot with node waking up for the first time is expected to be ଵ௠∑ ݅௜ୀ௠ିଵ௜ୀ଴ =௠ିଵଶ . Since there are	݉ × ൬1 − ቀ1 − ଵ௠ቁ௞൰ awake slots in a cycle, there are	ቀ1 − ଵ௠ቁ௞ empty slots and

the average interval is	 ቀଵି భ೘ቁೖ௠×ቆଵିቀଵି భ೘ቁೖቇ. □

Figure 15 shows an example of Theorem 7. Because there are only two slots, there are only two
possible cases of node’s waking up as shown in the figure where i = 1. When i = 2, there are four
possible cases as shown in the figure. When the number of slots is 2 and the number of node is 1, the
expectation of total number of slots is 3/2.

i=1

i=2

Sleep

Awake

Figure 15. Example of Theorem 7 (m = 2, i = 2).

Shown in Figure 16 is the influence trend of the number of son nodes on slot coverage, the abscissa
is the number of son nodes and the ordinate is the corresponding slot coverage. When the number of
son nodes increases, the coverage increases. Initially, the coverage increases rapidly and with the
increase of the number of son nodes, the coverage growth slows down. This is because, as the number
of son nodes increases, the slot coverage increases, the new nodes are more likely to share slot with
the existing nodes, so the improvement effect on slot coverage is very small.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Number Of Nodes

Slot Coverage

Figure 16. The influence trend of the number of nodes on slot coverage (m = 20).

Theorem 8. In traditional method, the expected delay is	௠ିଵଶ + ∑ (௧ܲ௥௔௡௦ 	× (1 − ௧ܲ௥௔௡௦)௝ିଵ × (݆ − 1) ×௝ୀ ೘்ೌೣ௝ୀଵ

Figure 15. Example of Theorem 7 (m = 2, i = 2).

Shown in Figure 16 is the influence trend of the number of son nodes on slot coverage, the abscissa
is the number of son nodes and the ordinate is the corresponding slot coverage. When the number
of son nodes increases, the coverage increases. Initially, the coverage increases rapidly and with the
increase of the number of son nodes, the coverage growth slows down. This is because, as the number
of son nodes increases, the slot coverage increases, the new nodes are more likely to share slot with the
existing nodes, so the improvement effect on slot coverage is very small.

Sensors 2018, 18, 3516 26 of 44

Sensors 2018, 18, x FOR PEER REVIEW 24 of 42

broadcasts after every node is the same with that before every node and the sum of them is the
expected number of slots with node waking up minus one. Therefore, the number of slots when

parent node broadcasts after every node is		௠×ቆଵିቀଵି భ೘ቁೖቇିଵଶ . Since the probability of waking up in a
slot is equal, in a cycle, the slot with node waking up for the first time is expected to be ଵ௠∑ ݅௜ୀ௠ିଵ௜ୀ଴ =௠ିଵଶ . Since there are	݉ × ൬1 − ቀ1 − ଵ௠ቁ௞൰ awake slots in a cycle, there are	ቀ1 − ଵ௠ቁ௞ empty slots and

the average interval is	 ቀଵି భ೘ቁೖ௠×ቆଵିቀଵି భ೘ቁೖቇ. □

Figure 15 shows an example of Theorem 7. Because there are only two slots, there are only two
possible cases of node’s waking up as shown in the figure where i = 1. When i = 2, there are four
possible cases as shown in the figure. When the number of slots is 2 and the number of node is 1, the
expectation of total number of slots is 3/2.

i=1

i=2

Sleep

Awake

Figure 15. Example of Theorem 7 (m = 2, i = 2).

Shown in Figure 16 is the influence trend of the number of son nodes on slot coverage, the abscissa
is the number of son nodes and the ordinate is the corresponding slot coverage. When the number of
son nodes increases, the coverage increases. Initially, the coverage increases rapidly and with the
increase of the number of son nodes, the coverage growth slows down. This is because, as the number
of son nodes increases, the slot coverage increases, the new nodes are more likely to share slot with
the existing nodes, so the improvement effect on slot coverage is very small.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Number Of Nodes

Slot Coverage

Figure 16. The influence trend of the number of nodes on slot coverage (m = 20).

Theorem 8. In traditional method, the expected delay is	௠ିଵଶ + ∑ (௧ܲ௥௔௡௦ 	× (1 − ௧ܲ௥௔௡௦)௝ିଵ × (݆ − 1) ×௝ୀ ೘்ೌೣ௝ୀଵ
Figure 16. The influence trend of the number of nodes on slot coverage (m = 20).

Theorem 8. In traditional method, the expected delay is m−1
2 +

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 × (j− 1)×m
)

.

Proof. Assuming that parent node is ready at s f ather and son node wakes up at sson, the empty delay is{
sson − s f ather , sson ≥ s f ather

sson + m− s f ather , sson < s f ather
, similar to the proof in Theorem 4, the expected empty delay is

m−1
2 . The expected transmission delay is ∑

j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 × (j− 1)×m
)

. Therefore,

the expected total delay is m−1
2 + ∑

j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 × (j− 1)×m
)

. �

Theorem 9. In the worst case, the IFAS algorithm is equivalent to the traditional algorithm; in other cases, after
this son node, it is assumed that there is a total of i slots when nodes wake up to receive data and the expectation
of delay of each node is

m−1
2 +

j=Tmax

∑
j=1

(
Ptrans × (1− Ptrans)

j−1 ×
(
sj − sson

))
, i ≥ Tmax

m−1
2 +

j=Tmax

∑
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − sson

)
+ m× (j−1)−(j−1)%(i+1)

i+1

))
, i < Tmax

Proof. Since the principle of IFAS shortening delay is to try to receive data packets by using the slots of
brother nodes after the failure of receiving, when the transmission success rate of data packets is 100%,
it will not fail to receive and the transmission delay cannot be reduced. Therefore, it is equivalent to
receiving data packets only at the initial slot, namely the traditional algorithm.

In other cases, assuming that parent node is ready at s f ather and son node wakes up at sson and
there is a total of i slots when nodes wake up to receive data after this son node, {s1, s2, , si}.
Write sson as s0.

The empty delay is

Sensors 2018, 18, 3516 27 of 44

{
sson − s f ather , sson ≥ s f ather

sson + m− s f ather , sson < s f ather
, similar to the proof in Theorem 4, the expected empty delay

is m−1
2 .

And the expectation of transmission delay is



∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 ×
(
sj − sson

))
, i ≥ Tmax

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − sson

)
+ m× (j−1)−(j−1)%(i+1)

i+1

))
, i < Tmax

.

Thus, the expected total delay is



m−1
2 + ∑

j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 ×
(
sj − sson

))
, i ≥ Tmax

m−1
2 + ∑

j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − sson

)
+ m× (j−1)−(j−1)%(i+1)

i+1

))
, i < Tmax

. �

Theorem 10. BTAS can always get better results than IFAS and always get better results than traditional
algorithm. Supposing there are i + 1 slots with node waking up, the expectation of delay of the last node is

si−s0
m ×∑

j=Tmax
j=2


Ptrans × (1− Ptrans)

j−1× (
m− si + s(j−2)%(i+1)

)
+

m×
(
(j−2)−(j−2)%(i+1)

i+1

) 
+ m−si+s0

m ×

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − s0

)
+ m× (j−1)−(j−1)%(i+1)

i+1

))+ (si−s0)
2+(m−si+s0)

2

2m .

Proof. According to Theorem 9, the IFAS algorithm is superior to the traditional algorithm in most
cases. In only a few cases, it can achieve the same effect as the traditional algorithm. Compared with
the IFAS algorithm, BTAS optimizes the nodes that wake up last and cannot use the slots of brother
nodes, greatly reducing the expectation of its delay, so it can always get better results than IFAS and
always get better results than traditional algorithm.

Since the last node in the IFAS algorithm cannot use the brother nodes’ slots, assuming that parent
node is ready at sfather and son node wakes up at sson, the expectation of transmission is

(
sson − s f ather

)
× Ptrans+

∑i=Tmax−1
i=1

(
Ptrans × (1− Ptrans)

i−1 ×m× i
)

, sson ≥ s f ather(
sson + m− s f ather

)
× Ptrans+

∑i=Tmax−1
i=1

(
Ptrans × (1− Ptrans)

i−1 ×m× i
)

, sson < s f ather

.

the expectation of total delay is



m−1
2 +

(
sson − s f ather

)
× Ptrans+

∑i=Tmax−1
i=1

(
Ptrans × (1− Ptrans)

i−1 ×m× i
)

, sson ≥ s f ather
m−1

2 +
(

sson + m− s f ather

)
× Ptrans+

∑i=Tmax−1
i=1

(
Ptrans × (1− Ptrans)

i−1 ×m× i
)

, sson < s f ather

.

Sensors 2018, 18, 3516 28 of 44

With BTAS, this node share s f irst with the first node. Supposing there are i + 1 slots
with node waking up, {s0, s1, , si}, then s f irst = s0, sson = si, the expectation

of empty delay is si−s0
2 × si−s0

m + m−si+s0
2 × m−si+s0

m = (si−s0)
2+(m−si+s0)

2

2m and the

expected transmission delay is si−s0
m × ∑

j=Tmax
j=2


Ptrans × (1− Ptrans)

j−1× (
m− si + s(j−2)%(i+1)

)
+

m×
(
(j−2)−(j−2)%(i+1)

i+1

) 
 +

m−si+s0
m × ∑

j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − s0

)
+ m× (j−1)−(j−1)%(i+1)

i+1

)) the expected

total delay is si−s0
m × ∑

j=Tmax
j=2


Ptrans × (1− Ptrans)

j−1× (
m− si + s(j−2)%(i+1)

)
+

m×
(
(j−2)−(j−2)%(i+1)

i+1

) 
 + m−si+s0

m ×

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − s0

)
+ m× (j−1)−(j−1)%(i+1)

i+1

))+ (si−s0)
2+(m−si+s0)

2

2m . �

Theorem 11. With AAPS, after the working cycle is fully covered, the expected total delay is
m

d+1−1
2 +

∑i=Tmax−1
i=0

(
Ptrans × (1− Ptrans)

i × i
)

.

Proof. According to Theorem 4, after d slots are added, the expected empty delay

is
m

d+1−1
2 . Assuming that the cycle is fully covered, the expectation of transmission

delay is ∑i=Tmax−1
i=0

(
Ptrans × (1− Ptrans)

i × i
)

. Thus, the expected total delay is
m

d+1−1
2 +

∑i=Tmax−1
i=0

(
Ptrans × (1− Ptrans)

i × i
)

. �

Premise. According to Theorem 7, the distribution of nodes’ slots is decided by the number of slots in
a cycle and son nodes, therefore, in the following analysis, it is assumed that m and the number of son

nodes (denoted as k) is constant. Therefore, there is a total of
m×

(
1−(1− 1

m)
k)−1

2 slots that can be used to
receive packet after failure. According to Theorem 8 and Theorem 9, the expected delay is affected
by the number of slots that can be used after failure and Tmax. In practice, the number of son nodes

is usually big, thus making the number of useful slots bigger than Tmax, namely
m×

(
1−(1− 1

m)
k)−1

2 ≥
Tmax. Therefore, in the following analysis, it is assumed that Tmax and Ptrans are constant and m, k, Tmax

satisfy the inequality stated above.

Theorem 12. Suppose the number of son nodes is k. The expected delay for all the nodes
under traditional algorithm is m−1

2 + m ×
(

1
Ptrans

− 1
)
− m ×

(
Tmax +

1
Ptrans

− 1
)
× (1− Ptrans)

Tmax .

The expected delay for all the nodes under IFAS is m−1
2 +

(
(1− 1

m)
k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

1
Ptrans

− 1
)
−(

(1− 1
m)

k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

Tmax +
1

Ptrans
− 1
)
× (1− Ptrans)

Tmax . The expected delay for the last node

under BTAS is

(
(1− 1

m)
k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

1
Ptrans

− 1
)
−
(

(1− 1
m)

k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

Tmax +
1

Ptrans
− 1
)
×

(1− Ptrans)
Tmax +

 (1− 1
m)

k

m×
(

1−(1− 1
m)

k
)+1

2

+

m− (1− 1
m)

k

m×
(

1−(1− 1
m)

k
)−1

2

2m . The expected delay for all the nodes under

AAPS is k−1
2 +

(
1

Ptrans
− 1
)
−
(

Tmax +
1

Ptrans
− 1
)
× (1− Ptrans)

Tmax .

Sensors 2018, 18, 3516 29 of 44

Proof. According to Theorem 8, the delay under traditional algorithm is m−1
2 +

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 × (j− 1)×m
)

. Therefore, after simplification, we get m−1
2 +

m×
(

1
Ptrans

− 1
)
−m×

(
Tmax +

1
Ptrans

− 1
)
× (1− Ptrans)

Tmax .

According to Theorem 9, the delay under IFAS algorithm is m−1
2 +

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1 ×
(
sj − sson

))
and according to Theorem 7, a node is expected

to wake up at m−1
2 and the average interval is (1− 1

m)
k

m×
(

1−(1− 1
m)

k) , thus, sson = m−1
2 , sj − sson =

j×(1− 1
m)

k

m×
(

1−(1− 1
m)

k) . Therefore, after simplication, the expected delay under IFAS algorithm is m−1
2 +(

(1− 1
m)

k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

1
Ptrans

− 1
)
−
(

(1− 1
m)

k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

Tmax +
1

Ptrans
− 1
)
× (1− Ptrans)

Tmax .

According to Theorem 10, assuming there is a total of i + 1 slots with node waking up, the

delay of the last node is expected to be si−s0
m × ∑

j=Tmax
j=2


Ptrans × (1− Ptrans)

j−1× (
m− si + s(j−2)%(i+1)

)
+

m×
(
(j−2)−(j−2)%(i+1)

i+1

) 
 +

m−si+s0
m ×∑

j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×((
sj%(i+1)−1 − s0

)
+ m× (j−1)−(j−1)%(i+1)

i+1

))+ (si−s0)
2+(m−si+s0)

2

2m .

Because
m×

(
1−(1− 1

m)
k)−1

2 ≥ Tmax, thus after simplification, the formular above

can be converted to si−s0
m × ∑

j=Tmax
j=2

(
Ptrans × (1− Ptrans)

j−1×(
m− si + sj−2

))
+ m−si+s0

m ×

∑
j=Tmax
j=1

(
Ptrans × (1− Ptrans)

j−1×(
sj−1 − s0

))
+ (si−s0)

2+(m−si+s0)
2

2m . Since the number of average

empty slots is (1− 1
m)

k

m×
(

1−(1− 1
m)

k) , the delay of the last node under BTAS algorithm is expected

to be

(
(1− 1

m)
k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

1
Ptrans

− 1
)
−
(

(1− 1
m)

k

m×
(

1−(1− 1
m)

k) + 1

)
×
(

Tmax +
1

Ptrans
− 1
)
×

(1− Ptrans)
Tmax +

 (1− 1
m)

k

m×
(

1−(1− 1
m)

k
)+1

2

+

m− (1− 1
m)

k

m×
(

1−(1− 1
m)

k
)−1

2

2m .

According to Theorem 11, the expected delay of node under AAPS algorithm is
m

d+1−1
2 +

∑i=Tmax−1
i=0

(
Ptrans × (1− Ptrans)

i × i
)

and according to Theorem 6, the number of added slots is
expected to be m

k − 1, thus after simplification, the delay under AAPS algorithm is expected to

be k−1
2 +

(
1

Ptrans
− 1
)
−
(

Tmax +
1

Ptrans
− 1
)
× (1− Ptrans)

Tmax . �

Theorem 13. Suppose the number of son nodes is k. Then compared with the traditional algorithm, IFAS

improves the transmission delay by 1−
(1− 1

m)
k
+m×

(
1−(1− 1

m)
k)

m2×
(

1−(1− 1
m)

k) , while AAPS improves the transmission delay

by 1− 1
m .

Proof. The delay can be divided into empty delay and transmission delay. After previous analysis,
we can get that the empty delay of traditional delay is equivalent to that of IFAS, which is m−1

2 ,
while the empty delay of AAPS is k−1

2 , improved by 1− k−1
m−1 , compared with traditional algorithm

and IFAS. Compared with the traditional algorithm, the transmission delay is improved by 1 −
(1− 1

m)
k
+m×

(
1−(1− 1

m)
k)

m2×
(

1−(1− 1
m)

k) under IFAS scheme. Compared with the traditional algorithm, the transmission

Sensors 2018, 18, 3516 30 of 44

delay is improved by 1− 1
m under AAPS. Compared with IFAS, the transmission delay is improved by

1−
m×

(
1−(1− 1

m)
k)

(1− 1
m)

k
+m×

(
1−(1− 1

m)
k) under AAPS scheme. �

The improvement effect of IFAS and AAPS compared with traditional algorithm is shown in
Figure 17. Since the slots added in AAPS algorithm promise minimum transmission delay, when the
total number of slots in a cycle is constant, the improvement effect of AAPS is also constant as shown
in the figure. While the improvement effect of IFAS increases as the number of son nodes increases,
which is because, when there are more son nodes, the coverage of cycle is larger and the distribution is
closer to the case of minimum transmission delay described in Theorem 5. Therefore, the improvement
effect of IFAS gets closer to that of AAPS.Sensors 2018, 18, x FOR PEER REVIEW 29 of 42

10 20 30 40 50

0.9465

0.9470

0.9475

0.9480

0.9485

0.9490

0.9495

0.9500

0.9505

Number Of Nodes

dsdas

 AAPS
 IFAS

dsdas

Delay Improvement Ratiodsdas dsdasdDsdas
dsdas dsdas

Figure 17. Comparison between IFAS algorithm and AAPS algorithm for transmission delay
optimization (m = 20).

6. Experiment Results and Performances Comparison

In the experiment, we use a randomly generated tree to compare the performances of four
algorithms in delay, transmission times and energy consumption. The tree has one sink node and 100
source nodes.

The experiment compares the performances of the four algorithms when the number of slots
) single transmission success rate ,(௦௟௢௧݉ݑܰ) ௧ܲ௥௔௡௦) and total success rate threshold (௧ܲ௛) changes. The
parameter settings are shown in Tables 6–8 respectively.

When using the AAPS method in practice, the number of slots that each node can add needs
calculation before it can be given. In the experiment, it is determined only by how many number of
hops the nodes are away from the root node. When the number of hops is 2 or 3, only one slot can be
added; when the number of hops is greater than 3, two slots can be added.

Table 6. Parameter settings with ܰ݉ݑ௦௟௢௧ as variable.

Setting ࢙࢔ࢇ࢚࢘ࡼ ࢎ࢚ࡼ
1 0.99 0.9
2 0.99 0.8
3 0.99 0.7

Table 7. Parameter settings with ௧ܲ௥௔௡௦ as variable.

Setting ࢎ࢚ࡼ ࢚࢕࢒࢙࢓࢛ࡺ
1 15 0.99
2 15 0.95
3 15 0.90

Table 8. Parameter settings with ௧ܲ௛ as variable.

Setting ࢙࢔ࢇ࢚࢘ࡼ ࢚࢕࢒࢙࢓࢛ࡺ
1 15 0.8
2 15 0.7
3 15 0.6

6.1. Diffusion Speed Comparison

As shown in Figure 18 is the average delay of the four algorithms with ܰ݉ݑ௦௟௢௧ as variable. The
values of the other parameters are set as described before. The abscissa is the number of slots and the

Figure 17. Comparison between IFAS algorithm and AAPS algorithm for transmission delay
optimization (m = 20).

6. Experiment Results and Performances Comparison

In the experiment, we use a randomly generated tree to compare the performances of four
algorithms in delay, transmission times and energy consumption. The tree has one sink node and 100
source nodes.

The experiment compares the performances of the four algorithms when the number of slots
(Numslot), single transmission success rate (Ptrans) and total success rate threshold (Pth) changes. The
parameter settings are shown in Tables 6–8 respectively.

Table 6. Parameter settings with Numslot as variable.

Setting Pth Ptrans

1 0.99 0.9
2 0.99 0.8
3 0.99 0.7

Table 7. Parameter settings with Ptrans as variable.

Setting Numslot Pth

1 15 0.99
2 15 0.95
3 15 0.90

Sensors 2018, 18, 3516 31 of 44

Table 8. Parameter settings with Pth as variable.

Setting Numslot Ptrans

1 15 0.8
2 15 0.7
3 15 0.6

When using the AAPS method in practice, the number of slots that each node can add needs
calculation before it can be given. In the experiment, it is determined only by how many number of
hops the nodes are away from the root node. When the number of hops is 2 or 3, only one slot can be
added; when the number of hops is greater than 3, two slots can be added.

6.1. Diffusion Speed Comparison

As shown in Figure 18 is the average delay of the four algorithms with Numslot as variable. The
values of the other parameters are set as described before. The abscissa is the number of slots and the
ordinate is the average delay. When the number of slots is increased, the delay of the four algorithms is
increased, which is because: for the traditional algorithm, after the first reception failure, it has to wait
for one cycle and the increase of slots makes the cycle longer and extends the transmission delay. For
the three algorithms proposed in this paper, as proved by Theorem 7 in Section 5.2, when the number of
nodes remains unchanged and the number of slots increases, the slot coverage decreases, which makes
the waiting time for nodes to receive for another time after failure longer. Therefore, the transmission
delay is prolonged. Furthermore, due to the decrease of slot coverage, the empty delay is also increased.
The improvement effect of the three algorithms compared with the traditional algorithm is shown
in Table 9. The optimization effect of IFAS is 5.29–16.08%, that of BTAS is 12.39–29.89% and that of
AAPS is 31.60–53.89%. The order of delay optimization ability of the three algorithms is consistent
with the proof in Section 5.2. However, the magnitude of optimization does not reach the effect in
Theorem 13 in Section 5.2. This is because: for the IFAS algorithm, the improving effect is affected by
slot distribution. When slots are denser at the back of the cycle, the improving effect is poor. At this
point, the last node is optimized by using BTAS algorithm and the optimization effect is twice as good
as IFAS. As for the AAPS algorithm, the optimization effect is greatly reduced in comparison with ideal
case because the number of added slots is far too small to reach the ideal coverage in the theoretical
analysis. However, even so, the optimization effect is still considerable, with a minimum of 31.60%
and a maximum of 53.89%.

Table 9. The improvement of delay compared with the traditional algorithm.

Numslot
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

10 5.36%, 10.43%, 14.56% 20.94%, 25.88%, 29.89% 44.51%, 49.64%, 53.89%
15 5.29%, 10.75%, 15.24% 12.39%, 19.24%, 24.88% 36.19%, 42.87%, 48.56%
20 6.01%, 11.55%, 16.08% 15.37%, 21.68%, 26.88% 31.60%, 38.20%, 43.74%

Sensors 2018, 18, 3516 32 of 44

Sensors 2018, 18, x FOR PEER REVIEW 30 of 42

ordinate is the average delay. When the number of slots is increased, the delay of the four algorithms
is increased, which is because: for the traditional algorithm, after the first reception failure, it has to
wait for one cycle and the increase of slots makes the cycle longer and extends the transmission delay.
For the three algorithms proposed in this paper, as proved by Theorem 7 in Section 5.2, when the
number of nodes remains unchanged and the number of slots increases, the slot coverage decreases,
which makes the waiting time for nodes to receive for another time after failure longer. Therefore,
the transmission delay is prolonged. Furthermore, due to the decrease of slot coverage, the empty
delay is also increased. The improvement effect of the three algorithms compared with the traditional
algorithm is shown in Table 9. The optimization effect of IFAS is 5.29–16.08%, that of BTAS is 12.39–
29.89% and that of AAPS is 31.60–53.89%. The order of delay optimization ability of the three
algorithms is consistent with the proof in Section 5.2. However, the magnitude of optimization does
not reach the effect in Theorem 13 in Section 5.2. This is because: for the IFAS algorithm, the
improving effect is affected by slot distribution. When slots are denser at the back of the cycle, the
improving effect is poor. At this point, the last node is optimized by using BTAS algorithm and the
optimization effect is twice as good as IFAS. As for the AAPS algorithm, the optimization effect is
greatly reduced in comparison with ideal case because the number of added slots is far too small to
reach the ideal coverage in the theoretical analysis. However, even so, the optimization effect is still
considerable, with a minimum of 31.60% and a maximum of 53.89%.

10 15 20
0

10

20

30

40

50

Num slot

Average Delay

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

10 15 20
0

10

20

30

40

50

60

Average Delay

Num slot

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

10 15 20
0

10

20

30

40

50

60

70

Average Delay

Num slot

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 18. The average delay with ܰ݉ݑ௦௟௢௧ as variable (setting 1, setting 2, setting 3).

Table 9. The improvement of delay compared with the traditional algorithm. ࢚࢕࢒࢙࢓࢛ࡺ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
10 5.36%, 10.43%, 14.56% 20.94%, 25.88%, 29.89% 44.51%, 49.64%, 53.89%
15 5.29%, 10.75%, 15.24% 12.39%, 19.24%, 24.88% 36.19%, 42.87%, 48.56%
20 6.01%, 11.55%, 16.08% 15.37%, 21.68%, 26.88% 31.60%, 38.20%, 43.74%

Figure 18. The average delay with Numslot as variable (setting 1, setting 2, setting 3).

As shown in Figure 19 is the average delay of the four algorithms with Ptrans as variable. The
values of the other parameters are set as described before. The abscissa is the single transmission
success rate and the ordinate is the average delay. When the single transmission success rate decreases,
the delay increases, which is because, as proved by Theorem 1 in Section 5.1, the single transmission
success rate decreases, leading to increased retransmission times, thus increasing transmission delay.
The optimization effect of the three algorithms proposed in this paper compared with the traditional
algorithms is shown in Table 10. The optimization effect of IFAS algorithm is 0.00–22.25%, that of BTAS
algorithm is 5.94–33.48% and that of AAPS is 29.35–57.72%. The minimum values are obtained when
the single transmission success rate is 0.9 and the transmission success rate threshold is 0.9 and only
one transmission is required. As shown in Theorem 9 in Section 5.2, the IFAS algorithm is equivalent
to the traditional algorithm in this case. However, the BTAS algorithm still gets a certain degree of
optimization because it optimizes the last node. Because the AAPS algorithm adds slots and reduces
the empty delay, it can obtain 29.35% optimization effect when the IFAS algorithm fails to achieve
optimization effect.

Sensors 2018, 18, 3516 33 of 44

Sensors 2018, 18, x FOR PEER REVIEW 31 of 42

As shown in Figure 19 is the average delay of the four algorithms with ௧ܲ௥௔௡௦ as variable. The
values of the other parameters are set as described before. The abscissa is the single transmission
success rate and the ordinate is the average delay. When the single transmission success rate
decreases, the delay increases, which is because, as proved by Theorem 1 in Section 5.1, the single
transmission success rate decreases, leading to increased retransmission times, thus increasing
transmission delay. The optimization effect of the three algorithms proposed in this paper compared
with the traditional algorithms is shown in Table 10. The optimization effect of IFAS algorithm is
0.00–22.25%, that of BTAS algorithm is 5.94–33.48% and that of AAPS is 29.35–57.72%. The minimum
values are obtained when the single transmission success rate is 0.9 and the transmission success rate
threshold is 0.9 and only one transmission is required. As shown in Theorem 9 in Section 5.2, the
IFAS algorithm is equivalent to the traditional algorithm in this case. However, the BTAS algorithm
still gets a certain degree of optimization because it optimizes the last node. Because the AAPS
algorithm adds slots and reduces the empty delay, it can obtain 29.35% optimization effect when the
IFAS algorithm fails to achieve optimization effect.

0.9 0.8 0.7 0.6 0.5
0

10

20

30

40

50

60

70

80

90

Ptrans

Average Delay

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.9 0.8 0.7 0.6 0.5
0

10

20

30

40

50

60

70

80

Ptrans

Average Delay

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.9 0.8 0.7 0.6 0.5
0

10

20

30

40

50

60

Ptrans

 Unicast
 IFAS
 BTAS
 AAPS

Average Delay

Traditional

Figure 19. The average delay with ௧ܲ௥௔௡௦ as variable (setting 1, setting 2, setting 3).

Table 10. The improvement of delay compared with the traditional algorithm. ࢙࢔ࢇ࢚࢘ࡼ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
0.9 5.29%, 5.29%, 0.00% 12.39%, 12.39%, 5.94% 36.19%, 36.19%, 29.35%
0.8 10.75%, 8.61%, 8.61% 19.24%, 16.60%, 16.60% 42.87%, 40.13%, 40.13%
0.7 15.24%, 14.15%, 10.93% 24.88%, 23.55%, 19.62% 48.56%, 46.93%, 42.73%
0.6 19.24%, 18.25%, 16.69% 29.81%, 28.68%, 26.79% 53.77%, 52.32%, 49.87%
0.5 22.25%, 21.45%, 20.56% 33.48%, 32.54%, 31.59% 57.72%, 56.55%, 55.16%

Figure 19. The average delay with Ptrans as variable (setting 1, setting 2, setting 3).

Table 10. The improvement of delay compared with the traditional algorithm.

Ptrans
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

0.9 5.29%, 5.29%, 0.00% 12.39%, 12.39%, 5.94% 36.19%, 36.19%, 29.35%
0.8 10.75%, 8.61%, 8.61% 19.24%, 16.60%, 16.60% 42.87%, 40.13%, 40.13%
0.7 15.24%, 14.15%, 10.93% 24.88%, 23.55%, 19.62% 48.56%, 46.93%, 42.73%
0.6 19.24%, 18.25%, 16.69% 29.81%, 28.68%, 26.79% 53.77%, 52.32%, 49.87%
0.5 22.25%, 21.45%, 20.56% 33.48%, 32.54%, 31.59% 57.72%, 56.55%, 55.16%

As shown in Figure 20 is the average delay of the four algorithms with Pth as variable. The values
of the other parameters are set as described before. The abscissa is the total transmission success rate
and the ordinate is the average delay. When the threshold value of the total transmission success
rate decreases, the delay decreases, because: when the total transmission success rate decreases, the
transmission times decreases and the transmission delay is shortened. Compared with the traditional
algorithm, the optimization effect of the three algorithms proposed in this paper is shown in Table 11.
The optimization effect of IFAS is 8.61–19.24%, that of BTAS is 16.60–29.81% and that of AAPS is
40.13–53.77%.

Sensors 2018, 18, 3516 34 of 44

Sensors 2018, 18, x FOR PEER REVIEW 32 of 42

As shown in Figure 20 is the average delay of the four algorithms with ௧ܲ௛ as variable. The
values of the other parameters are set as described before. The abscissa is the total transmission
success rate and the ordinate is the average delay. When the threshold value of the total transmission
success rate decreases, the delay decreases, because: when the total transmission success rate
decreases, the transmission times decreases and the transmission delay is shortened. Compared with
the traditional algorithm, the optimization effect of the three algorithms proposed in this paper is
shown in Table 11. The optimization effect of IFAS is 8.61–19.24%, that of BTAS is 16.60–29.81% and
that of AAPS is 40.13–53.77%.

0.99 0.95 0.9
0

5

10

15

20

25

30

35

40

45
 Unicast
 IFAS
 BTAS
 AAPS

Traditional

Average Delay

Pth 0.99 0.95 0.9
0

10

20

30

40

50

60
Average Delay

Pth

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.99 0.95 0.9
0

10

20

30

40

50

60

70

Average Delay

Pth

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 20. The average delay with ௧ܲ௛ as variable (setting 1, setting 2, setting 3).

Table 11. The improvement of delay compared with the traditional algorithm. ࢎ࢚ࡼ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
0.99 10.75%, 15.24%, 19.24% 19.24%, 24.88%, 29.81% 42.87%, 48.56%, 53.77%
0.95 8.61%, 14.45%, 18.25% 16.60%, 23.55%, 28.68% 40.13%, 46.93%, 52.32%
0.90 8.61%, 10.93%, 16.69% 16.60%, 19.62%, 26.79% 40.13%, 42.73%, 49.88%

In terms of improving the performance of the diffusion rate, compared with traditional
algorithm, the AAPS algorithm is increased by 31.60–55.16% and the BTAS algorithm is increased by
12.39–31.59% and the IFAS algorithm is increased by 0.00–20.56%. The minimum increase is obtained
on the assumption that the packet can be successfully received with one send in the networks. Under
this condition, the IFAS algorithm cannot make use of other slots after failure, which is identical to
the traditional algorithm, while the BTAS algorithm and AAPS algorithm can still improve the
performance due to the increase of awake slots. The maximum improvement is obtained in the case
of poor networks conditions, that is, the single transmission success rate is very low and the packet
needs multiple retransmission. The three algorithms proposed in this paper can significantly improve
the performance of the networks in the aspect of delay when the networks condition is poor. This is
because all three algorithms can reduce the transmission delay when multiple retransmission is
required, whereas in the traditional algorithm, it takes one cycle to receive the code again when the
node reception fails.

Figure 20. The average delay with Pth as variable (setting 1, setting 2, setting 3).

Table 11. The improvement of delay compared with the traditional algorithm.

Pth
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

0.99 10.75%, 15.24%, 19.24% 19.24%, 24.88%, 29.81% 42.87%, 48.56%, 53.77%
0.95 8.61%, 14.45%, 18.25% 16.60%, 23.55%, 28.68% 40.13%, 46.93%, 52.32%
0.90 8.61%, 10.93%, 16.69% 16.60%, 19.62%, 26.79% 40.13%, 42.73%, 49.88%

In terms of improving the performance of the diffusion rate, compared with traditional algorithm,
the AAPS algorithm is increased by 31.60–55.16% and the BTAS algorithm is increased by 12.39–31.59%
and the IFAS algorithm is increased by 0.00–20.56%. The minimum increase is obtained on the
assumption that the packet can be successfully received with one send in the networks. Under
this condition, the IFAS algorithm cannot make use of other slots after failure, which is identical
to the traditional algorithm, while the BTAS algorithm and AAPS algorithm can still improve the
performance due to the increase of awake slots. The maximum improvement is obtained in the case
of poor networks conditions, that is, the single transmission success rate is very low and the packet
needs multiple retransmission. The three algorithms proposed in this paper can significantly improve
the performance of the networks in the aspect of delay when the networks condition is poor. This
is because all three algorithms can reduce the transmission delay when multiple retransmission is
required, whereas in the traditional algorithm, it takes one cycle to receive the code again when the
node reception fails.

6.2. Transmission Times and Energy Consumption Comparison

As shown in Figure 21 is the average transmission times of the four algorithms with Numslot as
variable. The values of the other parameters are set as described before. The abscissa is the number
of slots and the ordinate is the average transmission times. When the number of slots increases, the

Sensors 2018, 18, 3516 35 of 44

number of transmission is almost unchanged or increases slightly. This is because, although the number
of slots is increased, the number of nodes remains the same and because the single transmission success
rate and total transmission success rate is unchanged, the number of transmission to a single node
remains the same, so the total transmission number remains the same. However, as the number of slots
increases, the slot coverage decreases and the number of slots shared by the nodes decreases, that is,
the number of sons that wake up to receive the code from parent node at the same slot decreases, thus
causing a slight increase in the transmission times. The improvement effect of the three algorithms
compared with the traditional algorithm is shown in Table 12. The optimization effect of IFAS is
20.73–29.53%, that of BTAS is 37.24–42.26% and that of AAPS is 30.19–41.48%. All three algorithms
can optimize because all three allow failed nodes to take advantage of the slots of other nodes. The
optimization effect of the BTAS algorithm is the best, because the last node in the IFAS algorithm
is always unable to share the time slot with other nodes and BTAS improves on this; in the AAPS
algorithm, due to the increase of slot, every node can complete the reception of data packets quickly.
Therefore, the node that wakes up earlier is less likely to share slot with the node that wakes later,
resulting in fewer nodes that wake up at the same slot, so the parent node sends for more times than
using BTAS.

Sensors 2018, 18, x FOR PEER REVIEW 33 of 42

6.2. Transmission Times and Energy Consumption Comparison

As shown in Figure 21 is the average transmission times of the four algorithms with ܰ݉ݑ௦௟௢௧ as
variable. The values of the other parameters are set as described before. The abscissa is the number
of slots and the ordinate is the average transmission times. When the number of slots increases, the
number of transmission is almost unchanged or increases slightly. This is because, although the
number of slots is increased, the number of nodes remains the same and because the single
transmission success rate and total transmission success rate is unchanged, the number of
transmission to a single node remains the same, so the total transmission number remains the same.
However, as the number of slots increases, the slot coverage decreases and the number of slots shared
by the nodes decreases, that is, the number of sons that wake up to receive the code from parent node
at the same slot decreases, thus causing a slight increase in the transmission times. The improvement
effect of the three algorithms compared with the traditional algorithm is shown in Table 12. The
optimization effect of IFAS is 20.73–29.53%, that of BTAS is 37.24–42.26% and that of AAPS is 30.19–
41.48%. All three algorithms can optimize because all three allow failed nodes to take advantage of
the slots of other nodes. The optimization effect of the BTAS algorithm is the best, because the last
node in the IFAS algorithm is always unable to share the time slot with other nodes and BTAS
improves on this; in the AAPS algorithm, due to the increase of slot, every node can complete the
reception of data packets quickly. Therefore, the node that wakes up earlier is less likely to share slot
with the node that wakes later, resulting in fewer nodes that wake up at the same slot, so the parent
node sends for more times than using BTAS.

10 15 20
0

1

2

3

4

5

6

7

8

9
Average Transmission Times

Num slot

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

10 15 20
0

1

2

3

4

5

6

7

8

9
Average Transmission Times

Num slot

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

10 15 20
0

2

4

6

8

10

12

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

Average Transmission Times

Num slot
Figure 21. The average transmission times with ܰ݉ݑ௦௟௢௧ as variable (setting 1, setting 2, setting 3).

Table 12. The improvement of transmission times compared with the traditional algorithm ࢚࢕࢒࢙࢓࢛ࡺ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
10 20.73%, 21.06%, 24.16% 37.85%, 38.39%, 41.21% 31.94%, 32.97%, 35.25%
15 21.13%, 23.66%, 26.33% 37.24%, 40.12%, 42.26% 30.23%, 36.68%, 41.48%
20 25.45%, 25.45%, 29.53% 38.50%, 38.50%, 41.93% 30.19%, 30.19%, 32.15%

Figure 21. The average transmission times with Numslot as variable (setting 1, setting 2, setting 3).

Table 12. The improvement of transmission times compared with the traditional algorithm.

Numslot
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

10 20.73%, 21.06%, 24.16% 37.85%, 38.39%, 41.21% 31.94%, 32.97%, 35.25%
15 21.13%, 23.66%, 26.33% 37.24%, 40.12%, 42.26% 30.23%, 36.68%, 41.48%
20 25.45%, 25.45%, 29.53% 38.50%, 38.50%, 41.93% 30.19%, 30.19%, 32.15%

Sensors 2018, 18, 3516 36 of 44

As shown in Figure 22 is the average transmission times of the four algorithms with Ptrans as
variable. The values of the other parameters are set as described before. The abscissa is the single
transmission success rate and the ordinate is the average transmission times. The improvement effect
of the three algorithms compared with the traditional algorithm is shown in Table 13. The optimization
effect of IFAS is 0.00–28.72%, that of BTAS is 16.09–43.93% and that of AAPS is −2.29–42.04%. When
the total transmission success rate is 0.9 and the single transmission success rate is 0.9, only one
transmission is required. In this case, the IFAS algorithm is equivalent to the traditional algorithm,
so the optimization effect of transmission times is 0.00%. In other cases, the optimization effect of IFAS
is always above 20%. When only one transmission is required, AAPS needs a bit more transmission
times than traditional algorithm, which is because the slots are not distributed uniformly and the
code can be sent at the slots when many nodes wake up or at other slots when only one node wakes
up. Therefore, it is unknown whether the transmission times increases or decreases. However, the
magnitude of increase or decrease is quite small. In this experiment, it only increases by 2.29%. In other
cases, at least 29.98% optimization is obtained.

Sensors 2018, 18, x FOR PEER REVIEW 34 of 42

As shown in Figure 22 is the average transmission times of the four algorithms with ௧ܲ௥௔௡௦ as
variable. The values of the other parameters are set as described before. The abscissa is the single
transmission success rate and the ordinate is the average transmission times. The improvement effect
of the three algorithms compared with the traditional algorithm is shown in Table 13. The
optimization effect of IFAS is 0.00–28.72%, that of BTAS is 16.09–43.93% and that of AAPS is −2.29–
42.04%. When the total transmission success rate is 0.9 and the single transmission success rate is 0.9,
only one transmission is required. In this case, the IFAS algorithm is equivalent to the traditional
algorithm, so the optimization effect of transmission times is 0.00%. In other cases, the optimization
effect of IFAS is always above 20%. When only one transmission is required, AAPS needs a bit more
transmission times than traditional algorithm, which is because the slots are not distributed
uniformly and the code can be sent at the slots when many nodes wake up or at other slots when
only one node wakes up. Therefore, it is unknown whether the transmission times increases or
decreases. However, the magnitude of increase or decrease is quite small. In this experiment, it only
increases by 2.29%. In other cases, at least 29.98% optimization is obtained.

0.9 0.8 0.7 0.6 0.5
0

2

4

6

8

10

12

14

16

18

20
Average Transmission Times

Ptrans

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.9 0.8 0.7 0.6 0.5
0

2

4

6

8

10

12

Average Transmission Times

Ptrans

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.9 0.8 0.7 0.6 0.5
0

2

4

6

8

10
Average Transmission Times

Ptrans

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 22. The average transmission times with ௧ܲ௥௔௡௦ as variable (setting 1, setting 2, setting 3).

Table 13. The improvement of transmission times compared with the traditional algorithm. ࢙࢔ࢇ࢚࢘ࡼ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
0.9 21.11%, 21.11%, 0.00% 37.24%, 37.24%, 16.09% 30.23%, 30.23%, −2.29%
0.8 23.66%, 22.18%, 22.18% 40.12%, 38.20%, 38.20% 36.68%, 30.38%, 30.38%
0.7 26.33%, 24.73%, 22.55% 42.26%, 40.76%, 38.59% 41.48%, 36.36%, 29.97%
0.6 25.16%, 27.95%, 24.95% 41.29%, 43.39%, 40.76% 40.00%, 42.04%, 35.14%
0.5 26.37%, 26.47%, 28.72% 42.08%, 41.20%, 43.93% 40.61%, 39.83%, 41.77%

As shown in Figure 23 is the average transmission times of the four algorithms with ௧ܲ௛ as
variable. The values of the other parameters are set as described before. The abscissa is the total
transmission success rate and the ordinate is the average transmission times. When the total
transmission success rate decreases, the average transmission times decreases. This is because, as
total transmission success rate decreases, so does the number of transmissions required by a single

Figure 22. The average transmission times with Ptrans as variable (setting 1, setting 2, setting 3).

Table 13. The improvement of transmission times compared with the traditional algorithm.

Ptrans
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

0.9 21.11%, 21.11%, 0.00% 37.24%, 37.24%, 16.09% 30.23%, 30.23%, −2.29%
0.8 23.66%, 22.18%, 22.18% 40.12%, 38.20%, 38.20% 36.68%, 30.38%, 30.38%
0.7 26.33%, 24.73%, 22.55% 42.26%, 40.76%, 38.59% 41.48%, 36.36%, 29.97%
0.6 25.16%, 27.95%, 24.95% 41.29%, 43.39%, 40.76% 40.00%, 42.04%, 35.14%
0.5 26.37%, 26.47%, 28.72% 42.08%, 41.20%, 43.93% 40.61%, 39.83%, 41.77%

Sensors 2018, 18, 3516 37 of 44

As shown in Figure 23 is the average transmission times of the four algorithms with Pth as variable.
The values of the other parameters are set as described before. The abscissa is the total transmission
success rate and the ordinate is the average transmission times. When the total transmission success
rate decreases, the average transmission times decreases. This is because, as total transmission success
rate decreases, so does the number of transmissions required by a single node and thus the total
number of transmission also decreases. The improvement effect of the three algorithms compared
with the traditional algorithm is shown in Table 14. The optimization effect of IFAS is 22.18–27.95%,
that of BTAS is 38.20–43.39% and that of AAPS is 30.38–42.04%.

Sensors 2018, 18, x FOR PEER REVIEW 35 of 42

node and thus the total number of transmission also decreases. The improvement effect of the three
algorithms compared with the traditional algorithm is shown in Table 14. The optimization effect of
IFAS is 22.18–27.95%, that of BTAS is 38.20–43.39% and that of AAPS is 30.38–42.04%.

0.99 0.95 0.9
0

1

2

3

4

5

6

7

8

Average Transmission Times

Pth

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.99 0.95 0.9
0

2

4

6

8

10

12

14

16

Average Transmission Times

Pth

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.99 0.95 0.9
0

2

4

6

8

10

12
Average Transmission Times

Pth

 Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 23. The average transmission times with ௧ܲ௛ as variable (setting 1, setting 2, setting 3).

Table 14. The improvement of transmission times compared with the traditional algorithm. ࢎ࢚ࡼ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
0.99 23.66%, 26.33%, 25.16% 40.12%, 42.26%, 41.29% 36.68%, 41.48%, 40.00%
0.95 22.18%, 24.73%, 27.95% 38.20%, 40.76%, 43.39% 30.38%, 36.36%, 42.04%
0.90 22.18%, 22.55%, 24.95% 38.20%, 38.59%, 40.76% 30.38%, 29.97%, 35.14%

As shown in Figure 24 is the average energy consumption of the four algorithms with ܰ݉ݑ௦௟௢௧
as variable. The values of the other parameters are set as described before. The abscissa is the number
of slots and the ordinate is the average energy consumption. When the number of slots is increased,
the average energy consumption is almost unchanged or slightly increases, which is the same case as
the average transmission times. This is because the total energy consumption is mainly composed of
the energy consumption of sending code and receiving code. The improvement effect of the three
algorithms compared with the traditional algorithm is shown in Table 15. The optimization effect of
IFAS is 15.12–25.10%, that of BTAS is 27.16–35.71% and that of AAPS is 22.05–35.04%. As analyzed
above, the energy consumption during broadcasting is mainly composed of the energy consumed by
the parent node’s sending the packet and the son nodes’ receiving the packet, so it is similar to the
average transmission times.

Figure 23. The average transmission times with Pth as variable (setting 1, setting 2, setting 3).

Table 14. The improvement of transmission times compared with the traditional algorithm.

Pth
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

0.99 23.66%, 26.33%, 25.16% 40.12%, 42.26%, 41.29% 36.68%, 41.48%, 40.00%
0.95 22.18%, 24.73%, 27.95% 38.20%, 40.76%, 43.39% 30.38%, 36.36%, 42.04%
0.90 22.18%, 22.55%, 24.95% 38.20%, 38.59%, 40.76% 30.38%, 29.97%, 35.14%

As shown in Figure 24 is the average energy consumption of the four algorithms with Numslot as
variable. The values of the other parameters are set as described before. The abscissa is the number
of slots and the ordinate is the average energy consumption. When the number of slots is increased,
the average energy consumption is almost unchanged or slightly increases, which is the same case
as the average transmission times. This is because the total energy consumption is mainly composed
of the energy consumption of sending code and receiving code. The improvement effect of the three
algorithms compared with the traditional algorithm is shown in Table 15. The optimization effect of
IFAS is 15.12–25.10%, that of BTAS is 27.16–35.71% and that of AAPS is 22.05–35.04%. As analyzed
above, the energy consumption during broadcasting is mainly composed of the energy consumed by

Sensors 2018, 18, 3516 38 of 44

the parent node’s sending the packet and the son nodes’ receiving the packet, so it is similar to the
average transmission times.Sensors 2018, 18, x FOR PEER REVIEW 36 of 42

10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Average Energy Consumption

Num slot

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Average Energy Consumption

Num slot

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Average Energy Consumption

Num slot

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 24. The average energy consumption with ܰ݉ݑ௦௟௢௧ as variable (setting 1, setting 2, setting 3).

Table 15. The improvement of energy consumption compared with the traditional algorithm. ࢚࢕࢒࢙࢓࢛ࡺ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
10 15.12%, 16.91%, 20.44% 27.61%, 30.83%, 34.87% 23.29%, 26.47%, 29.83%
15 15.40%, 18.97%, 22.25% 27.16%, 32.17%, 35.71% 22.05%, 29.41%, 35.04%
20 20.55%, 20.55%, 25.10% 31.09%, 31.09%, 35.64% 24.38%, 24.38%, 27.33%

As shown in Figure 25 is the average energy consumption of the four algorithms with ௧ܲ௥௔௡௦ as
variable. The values of the other parameters are set as described before. The abscissa is the single
transmission success rate and the ordinate is the average transmission times. This is because, when
the success rate of single transmission decreases, the number of retransmission increases. Therefore,
the average energy consumption increases. The improvement effect of the three algorithms compared
with the traditional algorithm is shown in Table 16. The optimization effect of IFAS is 0.00–23.86%,
that of BTAS is 6.86–38.07% and that of AAPS is −0.97–36.75%. When the single transmission success
rate is 0.9 and the threshold of the total transmission success rate is 0.9, only one transmission is
required. In this case, IFAS is the same as the traditional algorithm, so the average energy
consumption is not increased. AAPS, when code is transmitted only once, increased the energy
consumption slightly by 0.97% due to a slight increase in transmission times. Since the nodes near
the sink, which consumes the most energy, do not add slots, the lifetime of the networks will not be
reduced.

Figure 24. The average energy consumption with Numslot as variable (setting 1, setting 2, setting 3).

Table 15. The improvement of energy consumption compared with the traditional algorithm.

Numslot
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

10 15.12%, 16.91%, 20.44% 27.61%, 30.83%, 34.87% 23.29%, 26.47%, 29.83%
15 15.40%, 18.97%, 22.25% 27.16%, 32.17%, 35.71% 22.05%, 29.41%, 35.04%
20 20.55%, 20.55%, 25.10% 31.09%, 31.09%, 35.64% 24.38%, 24.38%, 27.33%

As shown in Figure 25 is the average energy consumption of the four algorithms with Ptrans as
variable. The values of the other parameters are set as described before. The abscissa is the single
transmission success rate and the ordinate is the average transmission times. This is because, when
the success rate of single transmission decreases, the number of retransmission increases. Therefore,
the average energy consumption increases. The improvement effect of the three algorithms compared
with the traditional algorithm is shown in Table 16. The optimization effect of IFAS is 0.00–23.86%, that
of BTAS is 6.86–38.07% and that of AAPS is −0.97–36.75%. When the single transmission success rate
is 0.9 and the threshold of the total transmission success rate is 0.9, only one transmission is required.
In this case, IFAS is the same as the traditional algorithm, so the average energy consumption is not
increased. AAPS, when code is transmitted only once, increased the energy consumption slightly by
0.97% due to a slight increase in transmission times. Since the nodes near the sink, which consumes
the most energy, do not add slots, the lifetime of the networks will not be reduced.

Sensors 2018, 18, 3516 39 of 44

Sensors 2018, 18, x FOR PEER REVIEW 37 of 42

0.9 0.8 0.7 0.6 0.5
0

1

2

3

4

5

6
Average Energy Consumption

Ptrans

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.9 0.8 0.7 0.6 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Average Energy Consumption

Ptrans

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.9 0.8 0.7 0.6 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Average Energy Consumption

Ptrans

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 25. The average energy consumption with ௧ܲ௥௔௡௦ as variable (setting 1, setting 2, setting 3).

Table 16. The improvement of energy consumption compared with the traditional algorithm. ࢙࢔ࢇ࢚࢘ࡼ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
0.9 15.40%, 15.40%, 0.00% 27.16%, 27.16%, 6.86% 22.05%, 22.05%, −0.97%
0.8 18.97%, 15.82%, 15.82% 32.17%, 27.24%, 27.24% 29.41%, 21.67%, 21.67%
0.7 22.25%, 19.67%, 15.45% 35.71%, 32.43%, 26.44% 35.04%, 28.93%, 20.53%
0.6 22.38%, 23.50%, 19.43% 36.73%, 36.49%, 31.74% 35.58%, 35.36%, 27.36%
0.5 23.86%, 22.89%, 23.76% 38.07%, 35.64%, 36.34% 36.75%, 34.45%, 34.56%

As shown in Figure 26 is the average energy consumption of the four algorithms with ௧ܲ௛ as
variable. The values of the other parameters are set as described before. The abscissa is the total
transmission success rate and the ordinate is the average energy consumption. When the total
transmission success rate decreases, the average energy consumption decreases. This is because, as
total transmission success rate decreases, the number of transmissions required by a single node
decreases and thus the total number of transmission also decreases. The improvement effect of the
three algorithms compared with the traditional algorithm is shown in Table 17. The optimization
effect of IFAS is 15.45–23.50%, that of BTAS is 26.44–36.73% and that of AAPS is 20.53–35.58%. Since
the average energy consumption is mainly affected by the average transmission times, the results are
consistent with the average transmission times.

Figure 25. The average energy consumption with Ptrans as variable (setting 1, setting 2, setting 3).

Table 16. The improvement of energy consumption compared with the traditional algorithm.

Ptrans
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

0.9 15.40%, 15.40%, 0.00% 27.16%, 27.16%, 6.86% 22.05%, 22.05%, −0.97%
0.8 18.97%, 15.82%, 15.82% 32.17%, 27.24%, 27.24% 29.41%, 21.67%, 21.67%
0.7 22.25%, 19.67%, 15.45% 35.71%, 32.43%, 26.44% 35.04%, 28.93%, 20.53%
0.6 22.38%, 23.50%, 19.43% 36.73%, 36.49%, 31.74% 35.58%, 35.36%, 27.36%
0.5 23.86%, 22.89%, 23.76% 38.07%, 35.64%, 36.34% 36.75%, 34.45%, 34.56%

As shown in Figure 26 is the average energy consumption of the four algorithms with Pth as
variable. The values of the other parameters are set as described before. The abscissa is the total
transmission success rate and the ordinate is the average energy consumption. When the total
transmission success rate decreases, the average energy consumption decreases. This is because, as
total transmission success rate decreases, the number of transmissions required by a single node
decreases and thus the total number of transmission also decreases. The improvement effect of the
three algorithms compared with the traditional algorithm is shown in Table 17. The optimization
effect of IFAS is 15.45–23.50%, that of BTAS is 26.44–36.73% and that of AAPS is 20.53–35.58%. Since
the average energy consumption is mainly affected by the average transmission times, the results are
consistent with the average transmission times.

Sensors 2018, 18, 3516 40 of 44
Sensors 2018, 18, x FOR PEER REVIEW 38 of 42

0.99 0.95 0.9
0.0

0.5

1.0

1.5

2.0

2.5

Average Energy Consumption

Pth

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.99 0.95 0.9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Average Energy Consumption

Pth

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

0.99 0.95 0.9
0

1

2

3

4

5
Average Energy Consumption

Pth

J Unicast
 IFAS
 BTAS
 AAPS

Traditional

Figure 26. The average energy consumption with ௧ܲ௛ as variable (setting 1, setting 2, setting 3).

Table 17. The improvement of energy consumption compared with the traditional algorithm. ࢎ࢚ࡼ IFAS (Setting 1, Setting 2, Setting 3) BTAS (Setting 1, Setting 2, Setting 3) AAPS (Setting 1, Setting 2, Setting 3)
0.99 18.97%, 22.25%, 22.38% 32.17%, 35.71%, 36.73% 29.41%, 35.04%, 35.58%
0.95 15.82%, 19.67%, 23.50% 27.24%, 32.43%, 36.49% 21.67%, 28.93%, 35.36%
0.90 15.82%, 15.45%, 19.43% 27.24%, 26.44%, 31.74% 21.67%, 20.53%, 27.36%

In terms of the improvement of transmission times, compared with the traditional algorithm,
the AAPS algorithm is improved by −2.29–42.04%, the BTAS algorithm is improved by 16.09–43.93%
and the IFAS algorithm is improved by 0.00%–29.53%.

In terms of the improvement of energy consumption, compared with the traditional algorithm,
the AAPS algorithm is improved by −0.97–36.75%, the BTAS algorithm is improved by 6.86–36.49%
and the IFAS algorithm is improved by 0.00–25.10%.

The minimum improvement of transmission times and energy consumption is obtained under
the assumption that networks conditions are good enough and transmission can be completed at one
time. Because only one transmission is needed, IFAS algorithm is equivalent to the traditional
algorithm. Since the last node shares slot with the first node, BTAS can reduce the transmission times,
energy consumption when IFAS fails to improve. Since the slots added are decided by the original
slot, the node density at one slot is not uniform, therefore, transmission times can be increased or
decreased. In the experiment, compared with the traditional algorithm, AAPS needs 2.29% more
transmission times and 0.97% more energy but gets 29.35% delay optimization.

However, in actual use, the networks condition is almost impossible to be good enough for
transmission to be successful at one time. Therefore, the three algorithms proposed in this paper can
achieve shorter delay in actual use with fewer transmission times and less energy consumption
compared with the traditional algorithm.

Figure 26. The average energy consumption with Pth as variable (setting 1, setting 2, setting 3).

Table 17. The improvement of energy consumption compared with the traditional algorithm.

Pth
IFAS (Setting 1,

Setting 2, Setting 3)
BTAS (Setting 1,

Setting 2, Setting 3)
AAPS (Setting 1,

Setting 2, Setting 3)

0.99 18.97%, 22.25%, 22.38% 32.17%, 35.71%, 36.73% 29.41%, 35.04%, 35.58%
0.95 15.82%, 19.67%, 23.50% 27.24%, 32.43%, 36.49% 21.67%, 28.93%, 35.36%
0.90 15.82%, 15.45%, 19.43% 27.24%, 26.44%, 31.74% 21.67%, 20.53%, 27.36%

In terms of the improvement of transmission times, compared with the traditional algorithm, the
AAPS algorithm is improved by −2.29–42.04%, the BTAS algorithm is improved by 16.09–43.93% and
the IFAS algorithm is improved by 0.00%–29.53%.

In terms of the improvement of energy consumption, compared with the traditional algorithm,
the AAPS algorithm is improved by −0.97–36.75%, the BTAS algorithm is improved by 6.86–36.49%
and the IFAS algorithm is improved by 0.00–25.10%.

The minimum improvement of transmission times and energy consumption is obtained under the
assumption that networks conditions are good enough and transmission can be completed at one time.
Because only one transmission is needed, IFAS algorithm is equivalent to the traditional algorithm.
Since the last node shares slot with the first node, BTAS can reduce the transmission times, energy
consumption when IFAS fails to improve. Since the slots added are decided by the original slot, the
node density at one slot is not uniform, therefore, transmission times can be increased or decreased.
In the experiment, compared with the traditional algorithm, AAPS needs 2.29% more transmission
times and 0.97% more energy but gets 29.35% delay optimization.

However, in actual use, the networks condition is almost impossible to be good enough for
transmission to be successful at one time. Therefore, the three algorithms proposed in this paper
can achieve shorter delay in actual use with fewer transmission times and less energy consumption
compared with the traditional algorithm.

Sensors 2018, 18, 3516 41 of 44

7. Conclusions

In this paper, we proposed three broadcasting algorithms in WSNs. In previous research, a
tradeoff was achieved instead of all-round optimization in delay, transmission times and energy
consumption while maintaining long lifetime. By exploiting the broadcasting nature of wireless
communication, the methods we designed made breakthrough. The theoretical analysis we did
proved our methods practical and useful. The simulation result showed that IFAS, BTAS and AAPS
respectively reduced delay by 20.56%, 31.59% and 55.16% and reduced transmission times by 29.53%,
43.93% and 42.04%. In most cases, IFAS achieved better results than traditional algorithm or the same
results as it. BTAS under any circumstances obtained better results than traditional algorithm, AAPS
got great optimization in terms of delay but in rare case (that is, in the case of non-failure transmission),
led to a small increase in energy consumption, however, since the energy was consumed in area with
energy surplus, lifetime was not shortened.

Author Contributions: W.Q. performed the experiment, analyzed the experiment results and wrote the
manuscript. W.L., X.L. comment on the manuscript. A.L. conceived of the work and wrote part of the manuscript.
T.W., N.N.X. and Z.C. comment on the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (61772554), the Open
Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China
(No. ICT1800391).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. González-Briones, A.; Chamoso, P.; De La Prieta, F.; Demazeau, Y.; Corchado, J.M. Agreement Technologies
for Energy Optimization at Home. Sensors 2018, 18, 1633. [CrossRef] [PubMed]

2. Wang, X.; Ning, Z.; Wang, L. Offloading in Internet of Vehicles: A Fog-enabled Real-time Traffic Management
System. IEEE Trans. Ind. Inform. 2018, 14, 4568–4578. [CrossRef]

3. Yang, C.; Shi, Z.; Han, K.; Zhang, J.; Gu, Y.; Qin, Z. Optimization of Particle CBMeMBer Filters for Hardware
Implementation. IEEE Trans. Veh. Technol. 2018, 67, 9027–9031. [CrossRef]

4. Ding, Z.; Ota, K.; Liu, Y.; Zhang, N.; Zhao, M.; Song, H.; Liu, A.; Cai, Z. Orchestrating Data as Services based
Computing and Communication Model for Information-Centric Internet of Things. IEEE Access 2018, 6,
38900–38920. [CrossRef]

5. Shi, Z.; Zhou, C.; Gu, Y.; Goodman, N.A.; Qu, F. Source estimation using coprime array: A sparse
reconstruction perspective. IEEE Sens. J. 2017, 17, 755–765. [CrossRef]

6. Ren, Y.; Liu, W.; Liu, Y.; Xiong, N.; Liu, A.; Liu, X. An Effective Crowdsourcing Data Reporting Scheme to
Compose Cloud-based Services in Mobile Robotic Systems. IEEE Access 2018. [CrossRef]

7. Zhao, D.; Chin, K.; Raad, W. Approximation algorithms for broadcasting in duty cycled wireless sensor
networks. Wirel. Netw. 2014, 20, 2219–2236. [CrossRef]

8. Hu, X.; Cheng, J.; Zhou, M.; Hu, B.; Jiang, X.; Guo, Y.; Bai, K.; Wang, F. Emotion-aware cognitive system in
multi-channel cognitive radio ad hoc networks. IEEE Commun. Mag. 2018, 56, 180–187. [CrossRef]

9. Hou, W.; Ning, Z.; Hu, X.; Guo, L.; Deng, X.; Yang, Y.; Kwok, R.Y. On-Chip Hardware Accelerator for
Automated Diagnosis Through Human-Machine Interactions in Healthcare Delivery. IEEE Trans. Autom.
Sci. Eng. 2018, 1–12. [CrossRef]

10. Zhou, H.; Xu, S.; Ren, D.; Huang, C.; Zhang, H. Analysis of event-driven warning message propagation in
vehicular ad hoc networks. Ad Hoc Netw. 2017, 55, 87–96. [CrossRef]

11. Duc, T.L.; Le, D.T.; Zalyubovskiy, V.V.; Kim, D.S.; Choo, H. Level-based approach for minimum-transmission
broadcast in duty-cycled wireless sensor networks. Pervasive Mobile Comput. 2016, 27, 116–132. [CrossRef]

12. Zhu, H.; Xiao, F.; Sun, L.; Wang, R.; Yang, P. R-TTWD: Robust device-free through-the-wall detection of
moving human with WiFi. IEEE J. Sel. Areas Commun. 2017, 35, 1090–1103. [CrossRef]

13. Liu, X.; Liu, A.; Deng, Q.; Liu, H. Large-scale Programing Code Dissemination for Software Defined Wireless
Networks. Comput. J. 2017, 60, 1417–1442. [CrossRef]

14. Liu, X.; Liu, Y.; Liu, A.; Yang, L. Defending On-Off Attacks using Light Probing Messages in Smart Sensors
for Industrial Communication Systems. IEEE Trans. Ind. Inform. 2018, 14, 3801–3811. [CrossRef]

http://dx.doi.org/10.3390/s18051633
http://www.ncbi.nlm.nih.gov/pubmed/29783768
http://dx.doi.org/10.1109/TII.2018.2816590
http://dx.doi.org/10.1109/TVT.2018.2853120
http://dx.doi.org/10.1109/ACCESS.2018.2853134
http://dx.doi.org/10.1109/JSEN.2016.2637059
http://dx.doi.org/10.1109/ACCESS.2018.2868250
http://dx.doi.org/10.1007/s11276-014-0732-z
http://dx.doi.org/10.1109/MCOM.2018.1700728
http://dx.doi.org/10.1109/TASE.2018.2832454
http://dx.doi.org/10.1016/j.adhoc.2016.09.018
http://dx.doi.org/10.1016/j.pmcj.2015.10.002
http://dx.doi.org/10.1109/JSAC.2017.2679578
http://dx.doi.org/10.1093/comjnl/bxx014
http://dx.doi.org/10.1109/TII.2018.2836150

Sensors 2018, 18, 3516 42 of 44

15. Yu, S.; Liu, X.; Liu, A.; Xiong, N.; Cai, Z.; Wang, T. Adaption Broadcast Radius based Code Dissemination
Scheme for Low Energy Wireless Sensor Networks. Sensors 2018, 18, 1509. [CrossRef] [PubMed]

16. Zhou, C.; Gu, Y.; He, S.; Shi, Z. A robust and efficient algorithm for coprime array adaptive beamforming.
IEEE Trans. Veh. Technol. 2018, 67, 1099–1112. [CrossRef]

17. Liu, X.; Liu, Y.; Xiong, N.; Zhang, N.; Liu, A.; Shen, H.; Huang, C. Construction of Large-scale Low Cost
Deliver Infrastructure using Vehicular Networks. IEEE Access 2018, 6, 21482–21497. [CrossRef]

18. Zhou, H.; Wang, H.; Li, X.; Leung, V. A Survey on Mobile Data Offloading Technologies. IEEE Access 2018, 6,
5101–5111. [CrossRef]

19. Li, T.; Tian, S.; Liu, A.; Liu, H.; Pei, T. DDSV: Optimizing Delay and Delivery Ratio for Multimedia Big Data
Collection in Mobile Sensing Vehicles. IEEE Internet Things J. 2018. [CrossRef]

20. Ju, X.; Liu, W.; Zhang, C.; Liu, A.; Wang, T.; Xiong, N.; Cai, Z. An Energy Conserving and Transmission
Radius Adaptive Scheme to Optimize Performance of Energy Harvesting Sensor Networks. Sensors 2018, 18,
2885. [CrossRef] [PubMed]

21. Xu, X.; Zhang, N.; Song, H.; Liu, A.; Zhao, M.; Zeng, Z. Adaptive Beaconing based MAC Protocol for Sensor
based Wearable System. IEEE Access 2018, 6, 29700–29714. [CrossRef]

22. Zhang, J.; Hu, X.; Ning, Z.; Ngai, E.; Zhou, L.; Wei, J.; Cheng, J.; Hu, B. Energy-latency Trade-off for
Energy-aware Offloading in Mobile Edge Computing Networks. IEEE Internet Things J. 2018, 5, 2633–2645.
[CrossRef]

23. Liu, Z.; Tsuda, T.; Watanabe, H.; Ryuo, S.; Iwasawa, N. Data driven cyber-physical system for landslide
detection. Mobile Netw. Appl. 2018, 1–12. [CrossRef]

24. Zhou, H.; Ruan, M.; Zhu, C.; Leung, V.; Xu, S.; Huang, C. A Time-ordered Aggregation Model-based
Centrality Metric for Mobile Social Networks. IEEE Access 2018, 6, 25588–25599. [CrossRef]

25. Li, T.; Xiong, N.; Gao, J.; Song, H.; Liu, A.; Zeng, Z. Reliable Code Disseminations through Opportunistic
Communication in Vehicular Wireless Networks. IEEE Access 2018. [CrossRef]

26. Nguyen, P.; Ji, Y.; Liu, Z.; Vu, H.; Nguyen, K. Distributed hole-bypassing protocol in WSNs with constant
stretch and load balancing. Comput. Netw. 2017, 129, 232–250. [CrossRef]

27. Xiao, F.; Xie, X.; Li, Z.; Deng, Q.; Liu, A.; Sun, L. Wireless Networks Optimization via Physical Layer
Information for Smart Cities. IEEE Netw. 2018, 32, 88–93. [CrossRef]

28. Wang, T.; Zhang, G.; Liu, A.; Bhuiyan, M.Z.A.; Jin, Q. A Secure IoT Service Architecture with an Efficient
Balance Dynamics Based on Cloud and Edge Computing. IEEE Internet Things J. 2018. [CrossRef]

29. Wang, X.; Ning, Z.; Zhou, M.C.; Hu, X.; Wang, L.; Hu, B.; Kwok, R.Y.K.; Guo, Y. A Privacy-Preserving
Message Forwarding Framework for Opportunistic Cloud of Things. IEEE Internet Things J. 2018. [CrossRef]

30. Ning, Z.; Huang, J.; Wang, X. Vehicular fog computing: Enabling real-time traffic management for smart
cities. IEEE Wirel. Commun. 2018. [CrossRef]

31. Huang, M.; Liu, Y.; Zhang, N.; Xiong, N.; Liu, A.; Zeng, Z.; Song, H. A Services Routing based Caching
Scheme for Cloud Assisted CRNs. IEEE Access 2018, 6, 15787–15805. [CrossRef]

32. Liu, X.; Liu, W.; Liu, Y.; Song, H.; Liu, A.; Liu, X. A Trust and Priority based Code Updated Approach to
Guarantee Security for Vehicles Network. IEEE Access 2018. [CrossRef]

33. Liu, Q.; Liu, A. On the hybrid using of unicast-broadcast in wireless sensor networks. Comput. Electr. Eng.
2017. [CrossRef]

34. Li, X.; Liu, A.; Xie, M.; Xiong, N.; Zeng, Z.; Cai, Z. Adaptive Aggregation Routing to Reduce Delay for
Multi-Layer Wireless Sensor Networks. Sensors 2018, 18, 751. [CrossRef] [PubMed]

35. Li, Z.; Xiao, F.; Wang, S.; Pei, T.; Li, J. Achievable Rate Maximization for Cognitive Hybrid Satellite-Terrestrial
Networks with AF-Relays. IEEE J. Sel. Areas Commun. Spec. Issue Adv. Satell. Commun. 2018, 26, 304–313.
[CrossRef]

36. Liu, X. Node deployment based on extra path creation for wireless sensor networks on mountain roads.
IEEE Commun. Lett. 2017, 21, 2376–2379. [CrossRef]

37. Chen, X.; Pu, L.; Gao, L.; Wu, W.; Wu, D. Exploiting massive D2D collaboration for energy-efficient mobile
edge computing. IEEE Wirel. Commun. 2017, 24, 64–71. [CrossRef]

38. Fang, S.; Cai, Z.; Sun, W.; Liu, A.; Liu, F.; Liang, Z.; Wang, G. Feature Selection Method Based on Class
Discriminative Degree for Intelligent Medical Diagnosis. CMC: Comput. Mater. Contin. 2018, 55, 419–433.

39. Xiao, F.; Chen, L.; Sha, C.; Sun, L.; Wang, R.; Liu, A.X.; Ahmed, F. Noise Tolerant Localization for Sensor
Networks. IEEE/ACM Trans. Netw. 2018, 26, 1701–1714. [CrossRef]

http://dx.doi.org/10.3390/s18051509
http://www.ncbi.nlm.nih.gov/pubmed/29748525
http://dx.doi.org/10.1109/TVT.2017.2704610
http://dx.doi.org/10.1109/ACCESS.2018.2825250
http://dx.doi.org/10.1109/ACCESS.2018.2799546
http://dx.doi.org/10.1109/JIOT.2018.2847243
http://dx.doi.org/10.3390/s18092885
http://www.ncbi.nlm.nih.gov/pubmed/30200347
http://dx.doi.org/10.1109/ACCESS.2018.2843762
http://dx.doi.org/10.1109/JIOT.2017.2786343
http://dx.doi.org/10.1007/s11036-018-1031-1
http://dx.doi.org/10.1109/ACCESS.2018.2831247
http://dx.doi.org/10.1109/ACCESS.2018.2870928
http://dx.doi.org/10.1016/j.comnet.2017.10.001
http://dx.doi.org/10.1109/MNET.2018.1700281
http://dx.doi.org/10.1109/JIOT.2018.2870288
http://dx.doi.org/10.1109/JIOT.2018.2864782
http://dx.doi.org/10.1109/MWC.2017.1700441
http://dx.doi.org/10.1109/ACCESS.2018.2815039
http://dx.doi.org/10.1109/ACCESS.2018.2872787
http://dx.doi.org/10.1016/j.compeleceng.2017.03.004
http://dx.doi.org/10.3390/s18041216
http://www.ncbi.nlm.nih.gov/pubmed/29659535
http://dx.doi.org/10.1109/JSAC.2018.2804018
http://dx.doi.org/10.1109/LCOMM.2017.2739727
http://dx.doi.org/10.1109/MWC.2017.1600321
http://dx.doi.org/10.1109/TNET.2018.2852754

Sensors 2018, 18, 3516 43 of 44

40. Huang, M.; Liu, A.; Zhao, M.; Wang, T. Multi Working Sets Alternate Covering Scheme for Continuous
Partial Coverage in WSNs. Peer-to-Peer Netw. Appl. 2018, 1–15. [CrossRef]

41. Liu, A.; Zhao, S. High performance target tracking scheme with low prediction precision requirement in
WSNs. Int. J. Ad Hoc Ubiquitous Comput. 2017. Available online: http://www.inderscience.com/info/
ingeneral/forthcoming.php?jcode=ijahuc (accessed on 23 May 2018).

42. Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y. Direction-of-arrival estimation for coprime array via
virtual array interpolation. IEEE Trans. Signal Process 2018, 2018, 6425067. [CrossRef]

43. Pu, L.; Chen, X.; Xu, J.; Fu, X. D2D fogging: An energy-efficient and incentive-aware task offloading
framework via networks-assisted D2D collaboration. IEEE J. Sel. Areas Commun. 2016, 34, 3887–3901.
[CrossRef]

44. Liu, X.; Dong, M.; Ota, K.; Yang, L.T.; Liu, A. Trace malicious source to guarantee cyber security for mass
monitor critical infrastructure. J. Comput. Syst. Sci. 2016, 98, 1–26. [CrossRef]

45. Huang, B.; Liu, A.; Zhang, C.; Xiong, N.; Zeng, Z.; Cai, Z. Caching Joint Shortcut Routing to Improve Quality
of Experiments of Users for Information-Centric Networksing. Sensors 2018, 18, 1750. [CrossRef] [PubMed]

46. Li, Z.; Liu, Y.; Ma, M.; Liu, A.; Zhang, X.; Luo, G. MSDG: A Novel Green Data Gathering Scheme for Wireless
Sensor Networks. Comput. Netw. 2018, 142, 223–239. [CrossRef]

47. Galzarano, S.; Savaglio, C.; Liotta, A.; Fortino, G. Gossiping-based aodv for wireless sensor networks.
In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Manchester, UK, 13–16 October 2013; pp. 26–31.

48. Li, X.; Liu, W.; Xie, M.; Liu, A.; Zhao, M.; Xiong, N.; Zhao, M.; Dai, W. Differentiated Data Aggregation
Routing Scheme for Energy Conserving and Delay Sensitive Wireless Sensor Networks. Sensors 2018, 18, 2349.
[CrossRef] [PubMed]

49. Kim, C.; Shin, D.H. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor
Data Loss Reduction in Unstable Wireless Sensor Networks Communications. Sensors 2017, 17, 1092.

50. Liu, Y.; Liu, A.; Chen, Z. Analysis and Improvement of Send-and-Wait Automatic Repeat-reQuest protocols
for Wireless Sensor Networks. Wirel. Pers. Commun. 2015, 81, 923–959. [CrossRef]

51. Cheng, L.; Niu, J.; Luo, C.; Shu, L.; Kong, L.; Zhao, Z.; Gu, Y. Towards minimum-delay and energy-efficient
flooding in low-duty-cycle wireless sensor networks. Comput. Netw. 2018, 134, 66–77. [CrossRef]

52. Li, T.; Liu, Y.; Xiong, N.; Liu, A.; Cai, Z.; Song, H. Privacy-Preserving Protocol of Sink Node Location in
Telemedicine Networks. IEEE Access 2018, 6, 42886–42903. [CrossRef]

53. Ning, Z.; Kong, X.; Xia, F.; Hou, W.; Wang, X. Green and Sustainable Cloud of Things: Enabling Collaborative
Edge Computing. IEEE Commun. Mag. 2018. [CrossRef]

54. Ren, Y.; Liu, Y.; Zhang, N.; Liu, A.; Xiong, N.; Cai, Z. Minimum-Cost Mobile Crowdsourcing with QoS
Guarantee Using Matrix Completion Technique. Pervasive Mobile Comput. 2018, 49, 23–44. [CrossRef]

55. Gui, J.; Deng, J. Multi-hop Relay-Aided Underlay D2D Communications for Improving Cellular Coverage
Quality. IEEE Access 2018, 6, 14318–14338. [CrossRef]

56. Luo, X.; Lv, Y.; Zhou, M.; Wang, W.; Zhao, W. A laguerre neural networks-based ADP learning scheme
with its application to tracking control in the Internet of Things. Pers. Ubiquitous Comput. 2016, 20, 361–372.
[CrossRef]

57. Molina, B.; Palau, C.E.; Fortino, G.; Guerrieri, A.; Savaglio, C. Empowering smart cities through interoperable
Sensor Network Enablers. In Proceedings of the 2014 IEEE International Conference on Systems, Man and
Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 7–12.

58. Savaglio, C.; Fortino, G. Autonomic and cognitive architectures for the Internet of Things. In Proceedings of
the International Conference on Internet and Distributed Computing Systems, Windsor, UK, 2–4 September
2015; Springer: Cham, Switzerland, 2015; pp. 39–47.

59. Clark, B.N.; Colbourn, C.J.; Johnson, D.S. Unit disk graphs. Discret. Math. 1990, 86, 165–177. [CrossRef]
60. Guha, S.; Khuller, S. Approximation algorithms for connected dominating sets. Algorithmica 1998, 20, 374–387.

[CrossRef]
61. Lim, H.; Kim, C. Flooding in wireless ad hoc networks. Comput. Commun. 2001, 24, 353–363. [CrossRef]
62. Khiati, M.; Djenouri, D. BOD-LEACH: Broadcasting over duty-cycled radio using LEACH clustering for

delay/power efficient dissimilation in wireless sensor networks. Int. J. Commun. Syst. 2015, 28, 296–308.
[CrossRef]

http://dx.doi.org/10.1007/s12083-018-0647-z
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijahuc
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijahuc
http://dx.doi.org/10.1109/TSP.2018.2872012
http://dx.doi.org/10.1109/JSAC.2016.2624118
http://dx.doi.org/10.1016/j.jcss.2016.09.008
http://dx.doi.org/10.3390/s18061750
http://www.ncbi.nlm.nih.gov/pubmed/29844285
http://dx.doi.org/10.1016/j.comnet.2018.06.012
http://dx.doi.org/10.3390/s18072349
http://www.ncbi.nlm.nih.gov/pubmed/30029552
http://dx.doi.org/10.1007/s11277-014-2164-6
http://dx.doi.org/10.1016/j.comnet.2018.01.012
http://dx.doi.org/10.1109/ACCESS.2018.2858274
http://dx.doi.org/10.1109/MCOM.2018.1700895
http://dx.doi.org/10.1016/j.pmcj.2018.06.012
http://dx.doi.org/10.1109/ACCESS.2018.2796247
http://dx.doi.org/10.1007/s00779-016-0916-x
http://dx.doi.org/10.1016/0012-365X(90)90358-O
http://dx.doi.org/10.1007/PL00009201
http://dx.doi.org/10.1016/S0140-3664(00)00233-4
http://dx.doi.org/10.1002/dac.2669

Sensors 2018, 18, 3516 44 of 44

63. Guo, L.; Ning, Z.; Hou, W.; Hu, B.; Guo, P. Quick Answer for Big Data in Sharing Economy: Innovative
Computer Architecture Design Facilitating Optimal Service-Demand Matching. IEEE Trans. Autom. Sci. Eng.
2018, 15, 1494–1506. [CrossRef]

64. Pooranian, Z.; Barati, A.; Movaghar, A. Queen-bee algorithm for energy efficient clusters in wireless sensor
networks. World Acad. Sci. Eng. Technol. 2011, 73, 1080–1083.

65. Naranjo, P.G.V.; Shojafar, M.; Mostafaei, H.; Pooranian, Z.; Baccarelli, E. P-SEP: A prolong stable election
routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. J. Supercomput.
2017, 73, 733–755. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TASE.2018.2838340
http://dx.doi.org/10.1007/s11227-016-1785-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Research on Delay Optimization
	Research on Transmission Times
	Research on Reliability

	Networks Model and Problem Statement
	Networks Model
	Problem Statement

	Minimum Delay Scheme Design
	Research Motivation
	IFAS, BTAS, AAPS Schemes Design

	Parameter Optimization and Performance Analysis
	Calculations of Energy and the Number of Slots that Can Be Added
	Delay Calculation

	Experiment Results and Performances Comparison
	Diffusion Speed Comparison
	Transmission Times and Energy Consumption Comparison

	Conclusions
	References

