DEDNet: Offshore Eddy Detection and Location with HF Radar by Deep Learning
Abstract
:1. Introduction
2. Related Work
3. Data Preparation
4. Our Proposed Method
4.1. Architecture
4.2. Loss Metric
5. Experiment
5.1. Experiment Setup
5.2. Performance Assessment
5.3. Detection Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santana, O.J.; Sosa, J.D.H.; Martz, J.; Smith, R.N. Neural Network Training for the Detection and Classification of Oceanic Mesoscale Eddies. Remote Sens. 2020, 12, 2625. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yuan, Y. The response of surface chlorophyll to mesoscale eddies generated in the eastern South China Sea. J. Oceanogr. 2020, 76, 211–226. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Zhang, W.; Li, J.; Wang, B. Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacific. J. Oceanol. Limnol. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Y.; Chen, C.; Liu, Y.; Wang, F.; Liu, J. A clustering-based approach to vortex extraction. J. Vis. 2020, 23, 459–474. [Google Scholar] [CrossRef]
- Kirincich, A. The occurrence, drivers, and implications of submesoscale eddies on the Martha’s Vineyard inner shelf. J. Phys. Ocean. 2016, 46, 2645–2662. [Google Scholar] [CrossRef]
- Ye, Z.X.; Chen, Q.; Li, B.H.; Zou, J.F.; Zheng, Y. Flow structure segmentation for vortex identification using butterfly convolutional neural networks. Int. J. Mod. Phys. B 2020, 34, 2040121. [Google Scholar] [CrossRef]
- Mehra, A.; Jain, N.; Srivastava, H.S. A novel approach to use semantic segmentation based deep learning networks to classify multi-temporal SAR data. Geocarto Int. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Arunraj, K.S.; Jena, B.K.; Suseentharan, V.; Rajkumar, J. Variability in Eddy Distribution Associated with East India Coastal Current From High-Frequency Radar Observations Along Southeast Coast of India. JGR Ocean. 2018, 123, 9101–9118. [Google Scholar] [CrossRef]
- Tian, G.Y.; Sophian, A.; Taylor, D. Multiple sensors on pulsed eddy-current detection for 3-D subsurface crack assessment. IEEE Sens. J. 2005, 5, 90–96. [Google Scholar] [CrossRef]
- Yan, Z.; Chong, J.; Zhao, Y.; Sun, K.; Wang, Y.; Li, Y. Multifeature Fusion Neural Network for Oceanic Phenomena Detection in SAR Images. Sensors 2019, 20, 210. [Google Scholar] [CrossRef] [Green Version]
- Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep. Sea Res. Oceanogr. Abstr. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Qin, D.; Wang, J.; Liu, Y. Eddy analysis in the Eastern China Sea using altimetry data. Front. Earth Sci. 2015, 9, 709–721. [Google Scholar] [CrossRef]
- Kim, S.Y. Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res. 2010, 30, 1639–1655. [Google Scholar] [CrossRef]
- Li, J.T.; Yong, Q. A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering. Acta Oceanol. Sin. 2019, 38, 134–141. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Ashkezari, M.D.; Hill, C.; Follett, C.L.; Forget, G.; Follows, M.J. Oceanic eddy detection and lifetime forecast using machine learning methods. Geophys. Res. Lett. 2016, 43, 12–234. [Google Scholar] [CrossRef] [Green Version]
- Moschos, E.; Schwander, O.; Stegner, A.; Gallinari, P. Deep-SST-Eddies: A Deep Learning Framework to Detect Oceanic Eddies in Sea Surface Temperature Images. IEEE ICASSP 2020, 4307–4311. [Google Scholar] [CrossRef] [Green Version]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A Vector Geometry–Based Eddy Detection Algorithm and Its Application to a High-Resolution Numerical Model Product and High-Frequency Radar Surface Velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Huang, D.; Du, Y.; He, Q.; Song, W.; Liotta, A. DeepEddy: A simple deep architecture for mesoscale oceanic eddy detection in SAR images. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 673–678. [Google Scholar]
- Aleynik, D.L.; Chepurin, Y.A.; Goncharov, V.V. Subsurface Eddy Detection Using Satellite and Acoustic Data. In Proceedings of the Egs General Assembly Conference. EGS General Assembly Conference Abstracts, Nice, France, 21–26 April 2002. [Google Scholar]
- Tang, Q.S.; Gulick, S.P.S.; Sun, L.T. Seismic observations from a Yakutat eddy in the northern Gulf of Alaska. J. Geophys. Res. Ocean. 2014, 119, 3535–3547. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Nencioli, F.; Liu, Y.; McWilliams, J.C. An Automated Approach to Detect Oceanic Eddies From Satellite Remotely Sensed Sea Surface Temperature Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1055–1059. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Oey, L.-Y. Analysis of STCC eddies using the Okubo–Weiss parameter on model and satellite data. Ocean Dyn. 2014, 64, 259–271. [Google Scholar] [CrossRef]
- Xia, Q.; Shen, H. Automatic detection of oceanic mesoscale eddies in the South China Sea. Chin. J. Oceanol. Limnol. 2015, 33, 1334–1348. [Google Scholar] [CrossRef]
- Viikmäe, B.; Torsvik, T. Quantification and characterization of mesoscale eddies with different automatic identification algorithms. J. Coast. Res. 2013, 165, 2077–2082. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Hou, Y. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res. 2012, 47, 178–185. [Google Scholar] [CrossRef]
- Franz, K.; Roscher, R.; Milioto, A.; Wenzel, S.; Kusche, J. Ocean Eddy Identification and Tracking using Neural Networks. In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 25 July 2018; pp. 6887–6890. [Google Scholar]
- Xu, G.; Cheng, C.; Yang, W.; Xie, W.; Kong, L.; Hang, R.; Ma, F.; Dong, C.; Yang, J. Oceanic Eddy Identification Using an AI Scheme. Remote Sens. 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Duo, Z.; Wang, W.; Wang, H. Oceanic Mesoscale Eddy Detection Method Based on Deep Learning. Remote Sens. 2019, 11, 1921. [Google Scholar] [CrossRef] [Green Version]
- Lguensat, R.; Sun, M.; Fablet, R.; Tandeo, P.; Mason, E.; Chen, G. EddyNet: A Deep Neural Network for Pixel-Wise Classification of Oceanic Eddies. IEEE IGARSS 2018, 38, 1764–1767. [Google Scholar]
- Du, Y.; Song, W.; He, Q.; Huang, D.; Liotta, A.; Su, C. Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection. Inf. Fusion 2019, 49, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Zhou, H.; Wen, B. Surface Current Characteristics in the Taiwan Strait Observed by High-Frequency Radars. IEEE J. Ocean. Eng. 2016, 42, 449–457. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; McWilliams, J.C. A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1063–6919. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 30 June 2016; pp. 770–778. [Google Scholar]
- Sesli, M.; Yegenoglu, E.D. Compare various combinations of similarity coefficients and clustering methods for Olea europaea sativa. Sci. Res. Essays 2010, 5, 2318–2326. [Google Scholar]
Algorithm | Dice Coefficient | Average Dice | IOU | Predication | ||
---|---|---|---|---|---|---|
Anticyclones | Cyclones | None | Coefficient | Accuracy | ||
DEDNet | 0.873 (0.002) | 0.861 (0.001) | 0.936 (0.001) | 0.89 (0.001) | 0.802 (0.001) | 91.38% (0.08%) |
FCN-based Net | 0.795 (0.002) | 0.824 (0.003) | 0.897 (0.001) | 0.838 (0.002) | 0.721 (0.002) | 87.66% (0.11%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Zhou, H.; Wen, B. DEDNet: Offshore Eddy Detection and Location with HF Radar by Deep Learning. Sensors 2021, 21, 126. https://doi.org/10.3390/s21010126
Liu F, Zhou H, Wen B. DEDNet: Offshore Eddy Detection and Location with HF Radar by Deep Learning. Sensors. 2021; 21(1):126. https://doi.org/10.3390/s21010126
Chicago/Turabian StyleLiu, Fangyuan, Hao Zhou, and Biyang Wen. 2021. "DEDNet: Offshore Eddy Detection and Location with HF Radar by Deep Learning" Sensors 21, no. 1: 126. https://doi.org/10.3390/s21010126
APA StyleLiu, F., Zhou, H., & Wen, B. (2021). DEDNet: Offshore Eddy Detection and Location with HF Radar by Deep Learning. Sensors, 21(1), 126. https://doi.org/10.3390/s21010126