Experimental Investigation of Optimal Relay Position for Magneto-Inductive Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Work
3. MI Waveguide Technique
3.1. System Model
3.2. Resonance Frequency of the System
3.3. Optimal Relay Position
3.3.1. Region 1
3.3.2. Region 2
3.3.3. Region 3
4. Experimental Evaluation
4.1. Experimental Setup
4.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akyildiz, I.F.; Wang, P.; Sun, Z. Realizing underwater communication through magnetic induction. IEEE Commun. Mag. 2015, 53, 42–48. [Google Scholar] [CrossRef]
- Kisseleff, S.; Akyildiz, I.F.; Gerstacker, W.H. Survey on advances in magnetic induction-based wireless underground sensor networks. IEEE Internet Things J. 2018, 5, 4843–4856. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Jin, C.; Zhang, Y.; Jiang, T. A Survey of underwater magnetic induction communications: Fundamental issues, recent advances, and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2466–2487. [Google Scholar] [CrossRef]
- Sun, Z.; Akyildiz, I.F. Magnetic induction communications for wireless underground sensor networks. IEEE Trans. Antennas Propag. 2010, 58, 2426–2435. [Google Scholar] [CrossRef] [Green Version]
- Domingo, M.C. Magnetic induction for underwater wireless communication networks. IEEE Trans. Antennas Propag. 2012, 60, 2929–2939. [Google Scholar] [CrossRef]
- Ahmed, N.; Radchenko, A.; Pommerenke, D.; Zheng, Y.R. Design and evaluation of low-cost and energy-efficient magneto-inductive sensor nodes for wireless sensor networks. IEEE Syst. J. 2018, 13, 1135–1144. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Z. M2I communication: From theoretical modeling to practical design. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Muzzammil, M.; Babar, Z.; Niaz, A.; Qiao, G.; Liu, S. Directivity Pattern of Different Coil Structures for Magneto-Coupled Communication Systems. In Proceedings of the OCEANS 2019 MTS/IEEE Marseille, Marseille, France, 17–20 June 2019. [Google Scholar]
- Sun, Z.; Wang, P.; Vuran, M.C.; Al-Rodhaan, M.A.; Al-Dhelaan, A.M.; Akyildiz, I.F. MISE-PIPE: Magnetic induction-based wireless sensor networks for underground pipeline monitoring. Ad Hoc Netw. 2011, 9, 218–227. [Google Scholar] [CrossRef]
- Kisseleff, S.; Akyildiz, I.F.; Gerstacker, W.H. Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques. IEEE Trans. Commun. 2014, 62, 4426–4439. [Google Scholar] [CrossRef]
- Schmidt, H.K.; Akyildiz, I.F.; Lin, S.C.; Al-Shehri, A.A. Magnetic Induction based Localization for Wireless Sensor Networks in Underground Oil Reservoirs. U.S. Patent Application No. 15/685,238, 7 Decemeber 2017. [Google Scholar]
- Huang, H.; Zheng, Y.R. 3-D localization of wireless sensor nodes using near-field magnetic-induction communications. Phys. Commun. 2018, 30, 97–106. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Wang, P.; Sun, Y. Environment-aware localization for wireless sensor networks using magnetic induction. Ad Hoc Netw. 2020, 98, 102030. [Google Scholar] [CrossRef]
- Menon, K.U.; Vikas, V.; Hariharan, B. Wireless power transfer to underground sensors using resonant magnetic induction. In Proceedings of the 2013 Tenth International Conference on Wireless and Optical Communications Networks (WOCN), Bhopal, India, 26–28 July 2013; pp. 1–5. [Google Scholar]
- Sun, Z.; Akyildiz, I.F. Optimal deployment for magnetic induction-based wireless networks in challenged environments. IEEE Trans. Wirel. Commun. 2013, 12, 996–1005. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Hoyt, J.; Radchenko, A.; Pommerenke, D.; Zheng, Y.R. A Multi-Coil Magneto-Inductive Transceiver for Low-Cost Wireless Sensor Networks. In Proceedings of the Underwater Communications Networking Conference, Sestri Levante, Italy, 3–5 September 2014; pp. 1–6. [Google Scholar]
- Sharma, P.; Meena, R.S.; Bhatia, D. Analytical channel model for double layer metamaterial-improved magnetic induction communication. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 618–622. [Google Scholar]
- Masihpour, M.; Franklin, D.; Abolhasan, M. Multihop relay techniques for communication range extension in near-field magnetic induction communication systems. J. Netw. 2013, 8, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Hunter, I.; Rhodes, J.D. Electronically tunable microwave bandpass filters. IEEE Trans. Microw. Theory Tech. 1982, 30, 1354–1360. [Google Scholar] [CrossRef]
- Tyurnev, V.V. Coupling coefficients of resonators in microwave filter theory. Prog. Electromagn. Res. 2010, 21, 47–67. [Google Scholar]
- Musonda, E.; Hunter, I.C. Microwave bandpass filters using re-entrant resonators. IEEE Trans. Microw. Theory Tech. 2015, 63, 954–964. [Google Scholar] [CrossRef]
- Arnold, C.; Parlebas, J.; Zwick, T. Reconfigurable waveguide filter with variable bandwidth and center frequency. IEEE Trans. Microw. Theory Tech. 2014, 62, 1663–1670. [Google Scholar] [CrossRef]
- Ahn, D.; Hong, S. A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron. 2012, 60, 360–371. [Google Scholar] [CrossRef]
- Saha, C.; Anya, I.; Alexandru, C.; Jinks, R. Wireless power transfer using relay resonators. Appl. Phys. Lett. 2018, 112, 263902. [Google Scholar] [CrossRef]
- Guo, K.; Zhou, J.; Sun, H.; Yao, P. Design Considerations for a Position-Adaptive Contactless Underwater Power Deliver System. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 Auguest 2019; pp. 1–6. [Google Scholar]
- Hasaba, R.; Okamoto, K.; Yagi, T.; Kawata, S.; Eguchi, K.; Koyanagi, Y. High Efficient Wireless Power Transfer System for AUV with Multiple Coils and Ferrite under Sea. In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; pp. 343–346. [Google Scholar]
- Tan, X.; Sun, Z.; Akyildiz, I.F. Wireless underground sensor networks: MI-based communication systems for underground applications. IEEE Antennas Propag. Mag. 2015, 57, 74–87. [Google Scholar] [CrossRef]
- Sun, Z.; Akyildiz, I.F. Underground wireless communication using magnetic induction. In Proceedings of the 2009 IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5. [Google Scholar]
- Leszczynska, N.; Szydlowski, L.; Mrozowski, M. A novel synthesis technique for microwave bandpass filters with frequency-dependent couplings. Prog. Electromagn. Res. 2013, 137, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Kung, M.L.; Lin, K.H. Dual-band coil module with repeaters for diverse wireless power transfer applications. IEEE Trans. Microw. Theory Tech. 2017, 66, 332–345. [Google Scholar] [CrossRef]
- Wang, C.S.; Stielau, O.H.; Covic, G.A. Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [Google Scholar] [CrossRef]
- Sample, A.P.; Meyer, D.T.; Smith, J.R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 2011, 58, 544–554. [Google Scholar] [CrossRef]
- Hong, J.S.; Lancaster, M.J. Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters. IEEE Trans. Microw. Theory Tech. 1996, 44, 2099–2109. [Google Scholar] [CrossRef]
- Frankl, D.R. Electromagnetic Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1986. [Google Scholar]
Sets | Resonance Frequency | ||
---|---|---|---|
N = 30 | N = 20 | N = 10 | |
r = 6 cm | 160 KHz | 219 KHz | 443 KHz |
r = 8 cm | 126 KHz | 174 KHz | 325 KHz |
r = 10 cm | 109 KHz | 147 KHz | 273 KHz |
r = 15 cm | 81 KHz | 119 KHz | 216 KHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, G.; Muzzammil, M.; Ahmed, N.; Ullah, I. Experimental Investigation of Optimal Relay Position for Magneto-Inductive Wireless Sensor Networks. Sensors 2020, 20, 2720. https://doi.org/10.3390/s20092720
Qiao G, Muzzammil M, Ahmed N, Ullah I. Experimental Investigation of Optimal Relay Position for Magneto-Inductive Wireless Sensor Networks. Sensors. 2020; 20(9):2720. https://doi.org/10.3390/s20092720
Chicago/Turabian StyleQiao, Gang, Muhammad Muzzammil, Niaz Ahmed, and Irfan Ullah. 2020. "Experimental Investigation of Optimal Relay Position for Magneto-Inductive Wireless Sensor Networks" Sensors 20, no. 9: 2720. https://doi.org/10.3390/s20092720
APA StyleQiao, G., Muzzammil, M., Ahmed, N., & Ullah, I. (2020). Experimental Investigation of Optimal Relay Position for Magneto-Inductive Wireless Sensor Networks. Sensors, 20(9), 2720. https://doi.org/10.3390/s20092720