Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Structure of Proposed SPR Sensor
2.2. Transfer Matrix Method
2.3. Genetic Algorithm
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, R.; Kushwaha, A.S.; Srivastava, M.; Mishra, H.; Srivastava, S.K. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl. Phys. A-Mater. 2018, 124, 235. [Google Scholar] [CrossRef]
- Béland, P.; Berini, P. Viability assessment of bacteria using long-range surface plasmon waveguide biosensors. Appl. Phys. A-Mater. 2017, 123, 31. [Google Scholar] [CrossRef]
- Piliarik, M.; Parova, L.; Homola, J. High-throughput SPR sensor for food safety. Biosens. Bioelectron. 2008, 24, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Farré, M.; Kantiani, L.; Barceló, D. Advances in immunochemical technologies for analysis of organic pollutants in the environment. Trends Anal. Chem. 2007, 26, 1100–1112. [Google Scholar] [CrossRef]
- Heckmann, J.; Pufahl, K.; Franz, P.; Grosse, N.B.; Li, X.; Woggon, U. Plasmon-enhanced nonlinear yield in the Otto and Kretschmann configurations. Phys. Rev. B 2018, 98, 115415. [Google Scholar] [CrossRef]
- McPhedran, R.; Nicorovici, N.A.; Alleyne, C.J.; Kirk, A.G.; Maystre, D. Enhanced SPR sensitivity using periodic metallic structures. Opt. Express 2007, 15, 8163–8169. [Google Scholar] [CrossRef]
- Kapoor, V.; Sharma, N.K.; Sajal, V. Effect of zinc oxide overlayer on the sensitivity of fiber optic SPR sensor with indium tin oxide layer. Optik 2019, 185, 464–468. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Dong, J.; Hu, S.; Zhu, W.; Qiu, W.; Lu, H.; Yu, J.; Guan, H.; Gao, S.; et al. Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photonics Res. 2018, 6, 485–491. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, N.K.; Sajal, V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: A theoretical study. Sens. Actuators B 2015, 206, 463–470. [Google Scholar] [CrossRef]
- Maharana, P.K.; Jha, R.; Palei, S. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B 2014, 190, 494–501. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, J.; Yang, H.; Chen, L.; Li, J.; Liu, H. Optimization of tunable symmetric SPR sensor based on Ag-graphene. Optik 2019, 184, 339–347. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, A.; Tripathi, R. Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 2015, 357, 106–112. [Google Scholar] [CrossRef]
- Maharana, P.K.; Jha, R.; Padhy, P. On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared. Sens. Actuators B 2015, 207, 117–122. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mahdiraji, G.A.; Ahmed, R.; Chow, D.M.; Sua, Y.M.; Shee, Y.G.; Adikan, F.R.M. Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 2016, 8, 4800408. [Google Scholar] [CrossRef]
- Zakaria, R.; Zainuddin, N.A.A.M.; Leong, T.C.; Rosli, R.; Rusdi, M.F.; Harun, S.W.; Sadegh Amiri, I. Investigation of surface plasmon resonance (SPR) in MoS2-and WS2-protected titanium side-polished optical fiber as a humidity sensor. Micromachines 2019, 10, 465. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Anower, M.S.; Abdulrazak, L.F. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photonic Nanostruct. 2019, 35, 100711. [Google Scholar] [CrossRef]
- Rahman, M.S.; Anower, M.S.; Hasan, M.R.; Hossain, M.B.; Haque, M.I. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 2017, 396, 36–43. [Google Scholar] [CrossRef]
- Kushwaha, A.S.; Kumar, A.; Kumar, R.; Srivastava, S.K. A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonic Nanostruct. 2018, 31, 99–106. [Google Scholar] [CrossRef]
- Wu, L.; Jia, Y.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J. Lightwave Technol. 2017, 35, 82–87. [Google Scholar] [CrossRef]
- Meshginqalam, B.; Barvestani, J. Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens. J. 2018, 18, 7537–7543. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, C.; Jin, S.; Huang, C.; Xing, J.; Liu, Z. Sensitivity enhancement of two-dimensional materials based on genetic optimization in surface plasmon resonance. Sensors 2019, 19, 1198. [Google Scholar] [CrossRef]
- Lin, C.; Chen, S. Design of high-performance Au-Ag-dielectric-graphene based surface plasmon resonance biosensors using genetic algorithm. J. Appl. Phys. 2019, 125, 113101. [Google Scholar] [CrossRef]
- Lin, C.; Chen, S. Design of highly sensitive guided-wave surface plasmon resonance biosensor with deep dip using genetic algorithm. Opt. Commun. 2019, 445, 155–160. [Google Scholar] [CrossRef]
- Bahrami, F.; Maisonneuve, M.; Meunier, M.; Aitchison, J.S.; Mojahedi, M. An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance. Opt. Express 2013, 21, 20863–20872. [Google Scholar] [CrossRef]
- Fu, P.H.; Lo, S.C.; Tsai, P.C.; Lee, K.L.; Wei, P.K. Optimization for gold nanostructure-based surface plasmon biosensors using a microgenetic algorithm. ACS Photonics 2018, 5, 2320–2327. [Google Scholar] [CrossRef]
- Jha, R.; Sharma, A.K. Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. A Pure Appl. Opt. 2009, 11, 045502. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Dai, X.; Gao, Y.; Xiang, Y. An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J. Appl. Phys. 2016, 120, 053101. [Google Scholar] [CrossRef]
- Aray, A.; Ranjbar, M. SPR-based fiber optic sensor using IMO thin film: Towards wide wavelength tunability from visible to NIR. IEEE Sens. J. 2019, 19, 2540–2546. [Google Scholar] [CrossRef]
- Chen, S.; Lin, C. Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express 2019, 6, 056503. [Google Scholar] [CrossRef]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic films can easily be better: Rules and recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Weber, J.W.; Calado, V.E.; van de Sanden, M.C.M. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97, 091904. [Google Scholar] [CrossRef]
- Jung, G.H.; Yoo, S.; Park, Q.H. Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions. Nanophotonics 2019, 8, 263–270. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; Qian, J.; He, S.; Qu, J.; Coquet, P. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A 2010, 159, 24–32. [Google Scholar] [CrossRef]
- Aksimsek, S.; Jussila, H.; Sun, Z. Graphene–MoS2–metal hybrid structures for plasmonic biosensors. Opt. Commun. 2018, 428, 233–239. [Google Scholar] [CrossRef]
- Maharana, P.K.; Jha, R. Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens. Actuators B 2012, 169, 161–166. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Dinh, X.-Q.; Coquet, P.; Yong, K.-T. Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Eng. 2016, 140, 134–139. [Google Scholar] [CrossRef]
2D Materials | Thickness of Monolayer (nm) |
---|---|
Graphene | 0.34 |
MoS2 | 0.65 |
WS2 | 0.8 |
WSe2 | 0.7 |
Metal | Wavelength (nm) | Thickness (nm) | K | L | M | N | Rres | θres | S |
---|---|---|---|---|---|---|---|---|---|
Au | 400 | 18.14 | 0 | 0 | 0 | 0 | 0.013 | 61.26 | 45 |
600 | 53.18 | 0 | 0 | 1 | 5 | 0.479 | 64.89 | 88 | |
800 | 58.58 | 0 | 1 | 12 | 8 | 0.433 | 76.07 | 142 | |
Ag | 400 | 59.63 | 1 | 0 | 0 | 0 | 0.603 | 71.09 | 194 |
600 | 51.92 | 0 | 0 | 4 | 6 | 0.723 | 64.76 | 90 | |
800 | 59.78 | 0 | 12 | 12 | 0 | 0.574 | 76.65 | 151 | |
Cu | 400 | 21.72 | 0 | 0 | 0 | 0 | 0.001 | 59.66 | 58 |
600 | 54.86 | 0 | 0 | 6 | 0 | 0.493 | 65.82 | 92 | |
800 | 59.20 | 0 | 6 | 13 | 2 | 0.417 | 75.56 | 143 |
Reference | Wave Length (nm) | Configuration | Layer Number of 2D Materials | Sensitivity (°/RIU) | |||
---|---|---|---|---|---|---|---|
Graphene | MoS2 | WS2 | WSe2 | ||||
[1] | 632.8 | BK7/ZnO/Ag/Au/graphene | l | — | — | — | 66 |
[15] | 633 | SF11/Au/graphene | 1 | — | — | — | 71 |
[17] | 633 | SF10/Au/Graphene/MoS2 | 1 | 2 | — | — | 89.29 |
[34] | 633 | SF10/Au/graphene | 1 | — | — | — | 53.2 |
[36] | 632.8 | SF11/Ag/MoS2/graphene | 1 | 5 | — | — | 73.5 |
[37] | 632.8 | 2S2G /Au/graphene | 6 | — | — | — | 46 |
[38] | 633 | SF10/Au/ MoS2 | 6 | — | — | 75.34 | |
This paper | 400 | SF11/Ag/graphene | 1 | — | — | — | 194 |
This paper | 600 | SF11/Cu/WSe2 | — | — | — | 6 | 92 |
This paper | 800 | SF11/Au/MoS2/WS2/WSe2 | — | 1 | 12 | 8 | 142 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Chen, S.; Lin, C. Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study. Sensors 2020, 20, 2445. https://doi.org/10.3390/s20092445
Lin Z, Chen S, Lin C. Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study. Sensors. 2020; 20(9):2445. https://doi.org/10.3390/s20092445
Chicago/Turabian StyleLin, Zhining, Shujing Chen, and Chengyou Lin. 2020. "Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study" Sensors 20, no. 9: 2445. https://doi.org/10.3390/s20092445
APA StyleLin, Z., Chen, S., & Lin, C. (2020). Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study. Sensors, 20(9), 2445. https://doi.org/10.3390/s20092445