Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature
Abstract
1. Introduction
2. Extraction of COM Parameters
2.1. Reflection Coefficient
2.2. Extraction of Other Relevant Parameters
3. COM Model
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fukuda, T.; Takeda, P.; Shimamura, K.; Kawanaka, H.; Kumatoriya, M.; Murakami, S.; Sato, J.; Sato, M. Growth of new langasite single crystals for piezoelectric applications. In Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, Montreux, Switzerland, 24–27 August 1998; pp. 315–319. [Google Scholar]
- Chai, B.; Lefaucheur, J.L.; Ji, Y.Y.; Qiu, H. Growth and evaluation of large size LGS, LGN and LGT single crystals. In Proceedings of the IEEE International Frequency Control Symposium, Pasadena, CA, USA, 29 May 1998; pp. 748–758. [Google Scholar]
- Buzanov, O.A.; Naumov, A.V.; Nechaev, V.V.; Knyazev, S.N. A new approach to the growth of langasite crystals. In Proceedings of the IEEE International Frequency Control Symposium, Honolulu, HI, USA, 5–7 June 1996; pp. 131–136. [Google Scholar]
- Smythe, R.C. Material and resonator properties of langasite and langatate—A progress report. In Proceedings of the IEEE International Frequency Control Symposium, Pasadena, CA, USA, 29 May 1998; pp. 761–765. [Google Scholar]
- Li, L.; Peng, B. Temperature-Dependent Characteristics of Surface Acoustic Wave Resonators Deposited on (0°, 138.5°, ψ) Langasite Cuts. IEEE Sens. J. 2019, 19, 1388–1391. [Google Scholar] [CrossRef]
- Ayes, A.; Bernhardt, G.; da Cunha, M.P. Removal of Stress Hillocks from Platinum-Alumina Electrodes Used in High-temperature SAW Devices. In Proceedings of the IEEE Ultrasonics Symposium, Glasgow, UK, 6–9 October 2019; pp. 727–730. [Google Scholar]
- Aubert, T.; Nicolay, P.; Sarry, F. Thermoelastic effects in Pt IDTs. Impact on the behavior of high-temperature LGS-based SAW devices. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 259–262. [Google Scholar]
- Weihnacht, M.; Sotnikov, A.; Schmidt, H.; Wall, B.; Grünwald, R. Langasite: High temperature properties and SAW simulations. In Proceedings of the International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1549–1552. [Google Scholar]
- Shu, L.; Peng, B.; Yang, Z.; Wang, R.; Deng, S.; Liu, X. High-Temperature SAW Wireless Strain Sensor with Langasite. IEEE Sens. J. 2015, 15, 28531–28542. [Google Scholar] [CrossRef] [PubMed]
- Bardong, J.; Aubert, T.; Naumenko, N.; Bruckner, G.; Salzmann, S.; Reindl, L.M. Experimental and Theoretical Investigations of Some Useful Langasite Cuts for High-Temperature SAW Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, S.; Kondratiev, S.; Zabelin, A.; Naumenko, N.; Azarov, A.; Zhgoon, S.; Shvetsov, A. Theoretical and experimental investigation of langasite as material for wireless high temperature SAW sensors. In Proceedings of the IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 535–538. [Google Scholar]
- Canabal, A.; Davulis, P.M.; Pollard, T.; Da Cunha, M.P. Multi-Sensor Wireless Interrogation of SAW Resonators at High Temperatures. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 265–268. [Google Scholar]
- Moulzolf, S.C.; Behanan, R.; Lad, R.J.; da Cunha, M.P. Langasite SAW Pressure Sensor for Harsh Environments. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1224–1227. [Google Scholar]
- Wendt, T.M.; Reindl, L.M. Multiple Access Methods utilized to extend Operational Life Time of Wireless Sensor Nodes. In Proceedings of the 2008 2nd Annual IEEE Systems Conference, Montreal, QC, Canada, 7–10 April 2008. [Google Scholar]
- Simons, D.A. Reflection of Rayleigh Waves by strips, grooves, and periodic arrays of strips or grooves. J. Acoust. Soc. Am. 1978, 63, 1292–1301. [Google Scholar] [CrossRef]
- Datta, S.; Hunsinger, B.J. First-order reflection coefficient of surface acoustic waves from thin strips overlays. J. Appl. Phys. 1979, 50, 5661–5665. [Google Scholar] [CrossRef]
- Datta, S.; Hunsinger, B.J. An analytical theory for the scattering of surface acoustic waves by a single electrode in a periodic array on a piezoelectric substrate. J. Appl. Phys. 1980, 51, 4817–4823. [Google Scholar] [CrossRef]
- Skeie, H. Electrical and Mechanical Loading of a Piezoelectric Surface supporting surface waves. J. Acoust. Soc. Am. 1970, 48, 1098–1109. [Google Scholar] [CrossRef]
- He, S.; Chen, D.; Wang, C. The IDT with high internal reflection suppression. Acta Acust. 1990, 15, 180. [Google Scholar]
- Plessky, V.; Koskela, J. Coupling-of-modes analysis of SAW devices. Int. J. High Speed Electron. Syst. 2000, 10, 867–947. [Google Scholar] [CrossRef]
Parameters | Description | Values |
---|---|---|
λ | Wavelength | 13.6 µm |
E | Electrode width | 3.4 µm |
A | Aperture | 1.36 mm |
f | Frequency | 195 MHz |
Nint | Number of T1 and T2 pairs | 15 |
L | Distance between IDTs | 1 mm |
L1 | Distance between Reflector and T3 | 2.6 mm |
COM Parameters | v (m/s) | α | C (F) | κ |
---|---|---|---|---|
value | 2512 | 1.613 × 10−4 | 2.589 × 10−10 | 0.0133 |
λ (µm) | Number of IDT Pairs | Number of Reflector Pairs | W | L1 | L2 |
---|---|---|---|---|---|
6.28 | 60 | 180 | 100λ | 0.125λ | 0.125λ |
6.28 | 60 | 180 | 100λ | 0. 25λ | 0.25λ |
6.28 | 60 | 180 | 100λ | 0.375λ | 0.375λ |
6.28 | 60 | 180 | 100λ | 0.5λ | 0.5λ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, W.; Fan, S.; Yin, Y.; Jia, Y.; Liang, Y.; Liu, M. Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Sensors 2020, 20, 2441. https://doi.org/10.3390/s20092441
Li X, Wang W, Fan S, Yin Y, Jia Y, Liang Y, Liu M. Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Sensors. 2020; 20(9):2441. https://doi.org/10.3390/s20092441
Chicago/Turabian StyleLi, Xueling, Wen Wang, Shuyao Fan, Yining Yin, Yana Jia, Yong Liang, and Mengwei Liu. 2020. "Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature" Sensors 20, no. 9: 2441. https://doi.org/10.3390/s20092441
APA StyleLi, X., Wang, W., Fan, S., Yin, Y., Jia, Y., Liang, Y., & Liu, M. (2020). Optimization of SAW Devices with LGS/Pt Structure for Sensing Temperature. Sensors, 20(9), 2441. https://doi.org/10.3390/s20092441