IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment
Abstract
1. Introduction
2. Related Work
2.1. Service Migration Framework
2.2. Service Migration Algorithm
3. IoT-RECSM Smart Service Migration Framework
3.1. Resource Utilization Model for Edge Node Resource
3.2. Resource Usage Model for Edge Service
3.3. Migration Service Selection Model
3.4. Edge Node Selection Model
| Algorithm 1 Network Maximum Flow. |
| Require: Ensure:f |
| 1: conversion the edge network into a directed edge network from s to t |
| 2: initialize flow f to 0 |
| 3: while there exists a path p between s and t do |
| 4: if all and then |
| 5: augment flow along p |
| 6: end if |
| 7: end while |
| 8: return f |
3.5. Dynamic Edge Service Migration Algorithm
| Algorithm 2 Dynamic Edge Smart Service Migration. |
| Require: |
| Ensure: |
| 1: |
| 2: if then |
| 3: while do |
| 4: |
| 5: end while |
| 6: |
| 7: while do |
| 8: |
| 9: |
| 10: if then |
| 11: |
| 12: end if |
| 13: end while |
| 14: while do |
| 15: |
| 16: |
| 17: end while |
| 18: |
| 19: if then |
| 20: |
| 21: end if |
| 22: |
| 23: |
| 24: end if |
4. The Prototype System and Case Study
4.1. The Class Graph of Prototype System
4.2. The Configuration of Prototype System
4.3. A Case of Edge Service Migration on Prototype System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Negash, B.; Rahmani, A.M.; Liljeberg, P.; Jantsch, A. Fog computing fundamentals in the internet-of-things. In Fog Computing in the Internet of Things; Springer: Cham, Switzerland, 2018; pp. 3–13. [Google Scholar]
- Wang, B.; Kong, W.; Guan, H.; Xiong, N.N. Air Quality Forcasting based on Gated Recurrent Long Short Term Memory Model in Internet of Things. IEEE Access 2019, 7, 69524–69534. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, J.; Lai, Y.; Cai, Y.; Tian, H.; Chen, Y.; Wang, B. Data Collection from WSNs to the Cloud based on Mobile Fog Elements. Future Gener. Comput. Syst. 2020, 105, 864–872. [Google Scholar] [CrossRef]
- Wu, W.; Huang, H.; Wu, N.; Wang, Y.; Bhuiyan, M.Z.A.; Wang, T. An Incentive-Based Protection and Recovery Strategy for Secure Big Data in Social Networks. Inf. Sci. 2020, 508, 79–91. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Fang, W.; Xue, F.; Jin, H.; Zhang, Y.; Li, X. A Distributed ADMM Approach for Collaborative Regression Learning in Edge Computing. Comput. Mater. Contin. 2019, 59, 493–508. [Google Scholar]
- Li, S.; Liu, F.; Liang, J.; Cai, Z.; Liang, Z. Optimization of Face Recognition System Based on Azure IoT Edge. Comput. Mater. Contin. 2019, 61, 1377–1389. [Google Scholar] [CrossRef]
- Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Qi, L.; Wu, J.; Hayajneh, T. Preserving Balance between Privacy and Data Integrity in Edge-Assisted Internet of Things. IEEE Internet Things J. 2020, 7, 2679–2689. [Google Scholar] [CrossRef]
- Wang, T.; Mei, Y.; Jia, W.; Zheng, X.; Wang, G.; Xie, M. Edge-based Differenital Privacy Computing for Sensor-Cloud Systems. J. Parallel Distrib. Comput. 2020, 136, 75–85. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Zheng, J.X.; Xie, M. Crowdsourcing Mechanism for Trust Evaluation in CPCS based on Intelligent Mobile Edge Computing. Acm Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Kun, Z.; Kang, Z.; Falin, F.; Hong, Y.; Yunlei, Y.; Deze, Z. Real-Time Massive Vector Field Data Processing in Edge Computing. Sensors 2019, 19, 2602. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA, 18-22 June 2018; pp. 4510–4520. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 1251–1258. [Google Scholar]
- Su, J.; Sheng, Z.; Xie, G.; Li, L.; Liu, G.; Alex, X. Fast splitting based tag identification algorithm for anti-collision in UHF RFID system. IEEE Trans. Commun. 2019, 67, 2527–2538. [Google Scholar] [CrossRef]
- Su, J.; Sheng, Z.; Leung Victor, C.M.; Chen, Y. Energy efficient tag identification algorithms for RFID: Survey, motivation and new design. IEEE Wirel. Commun. 2019, 26, 118–124. [Google Scholar] [CrossRef]
- Somayya, M.; Bhagat, P. Edge Computing in the IoT Environment: Principles, Features, and Models. In Edge Computing; Springer: Cham, Switzerland, 2018; pp. 23–43. [Google Scholar]
- Scheepers, M.J. Virtualization and containerization of application infrastructure: A comparison. In Proceedings of the 21st Twente Student Conference on IT, Enschede, The Netherlands, 23 June 2014; pp. 1–7. [Google Scholar]
- Le, S.; Hai, D.; Khadeer, H.O.; Khadeer, H.F.; Liu, A.X. A framework of cloud service selection with criteria interactions. Future Gener. Comput. Syst. 2019, 94, 749–764. [Google Scholar]
- Kazzaz, M.M.; Rychlý, M. Restful-based mobile Web service migration framework. In Proceedings of the 2017 IEEE International Conference on AI & Mobile Services (AIMS), Bangkok, Thailand, 25–27 August 2017; pp. 70–75. [Google Scholar]
- Jeong, T.; Chung, J.; Hong James, W.-K.; Ha, S. Towards a distributed computing framework for Fog. In Proceedings of the IEEE Edge World Congr. (Fwc), Santa Clara, CA, USA, 30 October–1 November 2017; pp. 1–6. [Google Scholar]
- Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A framework for edge node resource management. IEEE Trans. Serv. Comput. 2017. [Google Scholar] [CrossRef]
- Happ, D.; Wolisz, A. Towards gateway to Cloud offloading in IoT publish/subscribe systems. In Proceedings of the IEEE Second International Conference on Edge and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; pp. 101–106. [Google Scholar]
- Ibrahiem, O.; Chundrigar, S.; Huang, K.-L. Enabling Mobile Service Continuity across Orchestrated Edge Networks. IEEE Trans. Netw. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Puliafito, C.; Mingozzi, E.; Vallati, C.; Longo, F.; Merlino, G. Virtualization and Migration at the Network Edge: An Overview. In Proceedings of the 4th IEEE International Conference on Smart Computing, Taormina, Sicily, Italy, 18–22 June 2018; pp. 368–374. [Google Scholar]
- Tziritas, N.; Koziri, M.; Bachtsevani, A.; Loukopoulos, T.; Stamoulis, G.; Khan, S.U.; Xu, C.-Z. Data Replication and Virtual Machine Migrations to Mitigate Network Overhead in Edge Computing Systems. IEEE Trans. Sustain. Comput. 2017, 2, 320–332. [Google Scholar] [CrossRef]
- Bittencourt, L.F.; Lopes, M.M.; Petri, I.; Rana, O.F. Towards virtual machine migration in edge computing. In Proceedings of the IEEE 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 4–6 November 2015; pp. 1–8. [Google Scholar]
- Zhao, C.; Wang, T.; Yang, A. A Heterogeneous Virtual Machines Resource Allocation Scheme in Slices Architecture of 5G Edge Datacenter. Comput. Mater. Contin. 2019, 61, 423–437. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Zhao, J.; Di, X.; Liu, D. A vulnerability assessment method in industrial internet of things based on attack graph and maximum flow. IEEE Access 2018, 6, 8599–8609. [Google Scholar] [CrossRef]
- Github-hisangke/The-Prototype-System-of-Edge-Service-Migration. Available online: https://github.com/hisangke/The-prototype-system-of-edge-service-migration (accessed on 26 March 2020).
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and less 0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 14–18 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Barsoum, E.; Zhang, C.; Ferrer, C.C.; Zhang, Z. Training deep networks for facial expression recognition with crowd-sourced label distribution. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 279–283. [Google Scholar]
- Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De Geus, P. Malicious software classification using transfer learning of resnet-50 deep neural network. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]





| Symbol | Description |
|---|---|
| V | The set of edge nodes and is the number of edge nodes. |
| Edge node i and t and . | |
| The set of edge services of edge node . | |
| The number of edge services of edge node . | |
| S | The set of edge services. |
| The j-th service of edge node . | |
| The set of total resource of edge nodes. | |
| The total resource of k-th type of . | |
| The number of resource types of edge node . | |
| The set of total cost resource | |
| The set of total cost resource of edge nodes. | |
| The cost resource of k-th type of . | |
| The set of total cost resource of edge services. | |
| The cost resource of k-th type of ’s j-th service. | |
| The exponential function. | |
| The storage size of t-th service of edge node . | |
| The value of resource utilization of . | |
| The value of resource usage of ’s j-th service. |
| Edge Node | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 |
| 2 | 0.0 | 0.0 | 0.0 | 7.5 | 7.5 | 108.0 | 7.5 | 0.0 | 108.0 | 37.5 |
| 3 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 7.5 | 0.0 |
| 4 | 37.5 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 |
| 5 | 0.0 | 0.0 | 108.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6 | 0.0 | 37.5 | 7.5 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 |
| 8 | 0.0 | 0.0 | 108.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 |
| 9 | 0.0 | 0.0 | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 | 108.0 | 0.0 |
| Service | Storage Size (MB) | Service | Storage Size (MB) |
|---|---|---|---|
| squeezenet1_1 [31] | 4.736 | resnet101 [32] | 170.449 |
| squeezenet1_0 [31] | 4.785 | resnet152 [32] | 230.341 |
| densenet121 [33] | 30.844 | alexnet [34] | 233.095 |
| resnet18 [32] | 44.658 | vgg11 [35] | 506.835 |
| densenet169 [33] | 54.708 | vgg11_bn [35] | 506.881 |
| densenet201 [33] | 77.373 | vgg13 [36] | 507.540 |
| resnet34 [32] | 83.261 | vgg13_bn [36] | 507.589 |
| resnet50 [37] | 97.753 | vgg16 [35] | 527.795 |
| googlenet [38] | 103.814 | vgg19 [36] | 548.051 |
| Edge Node | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Cloud |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 0 | 15 |
| 1 | 2 | 0 | 0 | 1 | 3 | 5 | 0 | 4 | 7 | 0 | 18 |
| 2 | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 4 | 5 | 2 | 2 |
| 3 | 3 | 2 | 0 | 0 | 3 | 0 | 2 | 3 | 4 | 1 | 14 |
| 4 | 3 | 3 | 0 | 4 | 0 | 3 | 1 | 3 | 1 | 0 | 26 |
| 5 | 2 | 1 | 1 | 3 | 4 | 0 | 0 | 0 | 2 | 0 | 28 |
| 6 | 1 | 10 | 0 | 2 | 2 | 2 | 0 | 0 | 1 | 0 | 8 |
| 7 | 1 | 4 | 1 | 1 | 5 | 6 | 0 | 0 | 3 | 0 | 20 |
| 8 | 2 | 2 | 1 | 3 | 6 | 5 | 2 | 7 | 0 | 1 | 20 |
| 9 | 0 | 0 | 4 | 1 | 1 | 4 | 0 | 7 | 10 | 0 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Z.; Xiang, K.; Zhao, L.; Cheng, B.; Qian, J.; Wu, J. IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment. Sensors 2020, 20, 2294. https://doi.org/10.3390/s20082294
Zhai Z, Xiang K, Zhao L, Cheng B, Qian J, Wu J. IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment. Sensors. 2020; 20(8):2294. https://doi.org/10.3390/s20082294
Chicago/Turabian StyleZhai, Zhongyi, Ke Xiang, Lingzhong Zhao, Bo Cheng, Junyan Qian, and Jinsong Wu. 2020. "IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment" Sensors 20, no. 8: 2294. https://doi.org/10.3390/s20082294
APA StyleZhai, Z., Xiang, K., Zhao, L., Cheng, B., Qian, J., & Wu, J. (2020). IoT-RECSM—Resource-Constrained Smart Service Migration Framework for IoT Edge Computing Environment. Sensors, 20(8), 2294. https://doi.org/10.3390/s20082294

