Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. LIBS Measurement
2.3. Multivariate Analysis
2.4. One-Way ANOVA Test
3. Results and Discussion
3.1. Spectral Characteristics of Honey
3.2. PCA Analysis
3.3. Quantitative Discrimination
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tischer Seraglio, S.K.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Oliveira Costa, A.C. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Yusof, A.; Ahmad, N.S.; Hamid, A.M.S.; Khong, T.K. Effects of honey on exercise performance and health components: A systematic review. Sci. Sports 2018, 33, 267–281. [Google Scholar] [CrossRef]
- Ramsay, E.I.; Rao, S.; Madathil, L.; Hegde, S.K.; Baliga-Rao, M.P.; George, T.; Baliga, M.S. Honey in oral health and care: A mini review. J. Oral Biosci. 2019, 61, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Lo Turco, V.; Potorti, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Abd Razak, S.; Jambari, N.N.; Mian, Z.; Khatib, A. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 2019, 22, 238–263. [Google Scholar] [CrossRef] [Green Version]
- Rueckriemen, J.; Henle, T. Pilot study on the discrimination of commercial Leptospermum honeys from New Zealand and Australia by HPLC-MS/MS analysis. Eur. Food Res. Technol. 2018, 244, 1203–1209. [Google Scholar] [CrossRef]
- Dinca, O.; Ionete, R.E.; Popescu, R.; Costinel, D.; Radu, G. Geographical and Botanical Origin Discrimination of Romanian Honey Using Complex Stable Isotope Data and Chemometrics. Food Anal. Methods 2015, 8, 401–412. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.P.; Badeka, A.; Papastephanou, C.; Kontominas, M.G. Nutritional aspects and botanical origin recognition of Mediterranean honeys based on the “mineral imprint’’ with the application of supervised and non-supervised statistical techniques. Eur. Food Res. Technol. 2019, 245, 1939–1949. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Louppis, A.; Badeka, A.; Kontominas, M.G.; Papastephanou, C. Valorization of Prickly Pear Juice Geographical Origin Based on Mineral and Volatile Compound Contents Using LDA. Foods 2019, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Louppis, A.P.; Karabagias, I.K.; Papastephanou, C.; Badeka, A. Two-Way Characterization of Beekeepers’ Honey According to Botanical Origin on the Basis of Mineral Content Analysis Using ICP-OES Implemented with Multiple Chemometric Tools. Foods 2019, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, Y.; Yang, S.; Han, D. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Elamine, Y.; Inacio, P.M.C.; Lyoussi, B.; Anjos, O.; Estevinho, L.M.; Miguel, M.d.G.; Gomes, H.L. Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sens. Actuators B Chem. 2019, 285, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Ballabio, D.; Robotti, E.; Grisoni, F.; Quasso, F.; Bobba, M.; Vercelli, S.; Gosetti, F.; Calabrese, G.; Sangiorgi, E.; Orlandi, M.; et al. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chem. 2018, 266, 79–89. [Google Scholar] [CrossRef]
- Corvucci, F.; Nobili, L.; Melucci, D.; Grillenzoni, F. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 2015, 169, 297–304. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Z.; Yin, W.; Huang, D.; Ma, W.; Dong, L.; Wu, H.; Li, Z.; Xiao, L.; Jia, S. Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash. Front. Phys. 2012, 7, 690–700. [Google Scholar] [CrossRef]
- Harmon, R.S.; Russo, R.E.; Hark, R.R. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochim. Acta. Part B 2013, 87, 11–26. [Google Scholar] [CrossRef]
- Peng, J.; Liu, F.; Zhou, F.; Song, K.L.; Zhang, C.; Ye, L.H.; He, Y. Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. Trends Analyt. Chem. 2016, 85, 260–272. [Google Scholar] [CrossRef]
- Maione, C.; Barbosa, F., Jr.; Barbosa, R.M. Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Comput. Electron. Agric. 2019, 157, 436–446. [Google Scholar] [CrossRef]
- Peng, J.; Song, K.; Zhu, H.; Kong, W.; Liu, F.; Shen, T.; He, Y. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 2017, 7, 44551. [Google Scholar] [CrossRef]
- Ringner, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Wang, L.; Mizaikoff, B. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal. Bioanal. Chem. 2008, 391, 1641–1654. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Paliwal, K.K. Linear discriminant analysis for the small sample size problem: An overview. Int. J. Mach. Learn. Cybern. 2014, 6, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Maione, C.; Barbosa, R.M. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1868–1879. [Google Scholar] [CrossRef]
- Cozzolino, D. An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res. Int. 2014, 60, 262–265. [Google Scholar] [CrossRef]
- Rao, R.P.N.; Scherer, R. Chapter 10-Statistical Pattern Recognition and Machine Learning in Brain–Computer Interfaces. In Statistical Signal Processing for Neuroscience and Neurotechnology; Oweiss, K.G., Ed.; Academic Press: Oxford, UK, 2010; pp. 335–367. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST Atomic Spectra Database; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015.
- Fu, X.; Duan, F.; Huang, T.; Ma, L.; Jiang, J.; Li, Y. A fast variable selection method for quantitative analysis of soils using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2017, 32, 1166–1176. [Google Scholar] [CrossRef]
Variety | Sample Code | Origin | No. of Samples |
---|---|---|---|
Acacia honey | A1 | Shaanxi | 40 |
A2 | Shanxi | 40 | |
A3 | Jilin | 40 | |
Multi-floral honey | M1 | Shanxi | 40 |
M2 | Qinghai | 40 | |
M3 | Hubei | 40 |
No. | Observed Wavelength (nm) | Ritz Wavelength (nm) | Emissions | Peak Intensity (×103, Counts) * | |||||
---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | M1 | M2 | M3 | ||||
1 | 247.88 | 247.86 | C I | 255.28 ± 78.77a | 235.05 ± 30.74a,b | 224.46 ± 25.66b,c | 203.69 ± 36.67c,d | 195.31 ± 42.15d | 190.38 ± 59.54d |
2 | 279.58 | 279.55 | Mg II | 33.68 ± 11.60a | 5.27 ± 1.09b | 11.92 ± 2.89c | 10.81 ± 3.83c | 11.33 ± 4.07c | 50.35 ± 26.26d |
3 | 280.28 | 280.27 | Mg II | 17.90 ± 6.32a | 3.03 ± 0.61b | 6.40 ± 1.62c | 6.04 ± 2.18c | 6.28 ± 2.15c | 29.26 ± 115.02d |
4 | 285.23 | 285.21 | Mg I | 5.14 ± 1.39a | 1.26 ± 0.19b | 2.10 ± 0.48c | 2.97 ± 0.63d | 2.27 ± 0.30c | 10.27 ± 1.79e |
5 | 385.07 | 385.01 | CN 4-4 | 10.49 ± 1.50a | 10.28 ± 0.92a | 10.27 ± 0.95a | 11.71 ± 0.96b | 10.99 ± 0.97c | 10.32 ± 0.75a |
6 | 385.47 | 385.44 | CN 3-3 | 10.34 ± 1.47a,b | 10.04 ± 0.88a | 9.91 ± 0.94a | 11.19 ± 0.91c | 10.55 ± 0.99b | 10.14 ± 0.64a,b |
7 | 386.19 | 386.15 | CN 2-2 | 12.87 ± 1.59a,b | 12.68 ± 1.05a,b | 13.18 ± 1.21b | 15.00 ± 1.27c | 14.11 ± 1.29d | 12.38 ± 1.44a |
8 | 387.13 | 387.12 | CN 1-1 | 19.5 ± 2.78a,b | 19.10 ± 1.61a | 19.71 ± 2.05a,b | 22.07 ± 1.81c | 21.19 ± 2.18c | 20.07 ±1.40d |
9 | 388.33 | 388.32 | CN 0-0 | 38.34 ± 4.92a | 37.70 ± 3.21a | 38.10 ± 3.99a | 41.88 ± 3.60b | 40.24 ± 4.18b | 37.22 ± 3.06a |
10 | 393.37 | 393.37 | Ca II | 14.73 ± 3.92a | 9.74 ± 3.59b | 17.68 ± 5.00c | 23.18 ± 5.71d | 16.63 ± 5.81b,c | 28.48 ± 9.30e |
11 | 396.87 | 396.85 | Ca II | 11.70 ± 2.91a | 7.94 ± 2.69b | 13.39 ± 3.69a | 17.90 ± 4.28c | 12.59 ± 4.20a | 21.25 ± 6.82d |
12 | 422.68 | 422.67 | Ca I | 10.10 ± 3.16a | 7.42 ± 2.08b | 10.63 ± 3.04a | 17.29 ± 3.45c | 9.65 ± 2.18a | 19.90 ± 3.19d |
13 | 589.03 | 589.00 | Na I | 12.86 ± 3.49a | 3.15 ± 1.51b | 6.86 ± 2.36c | 4.89 ± 0.79d | 26.90 ± 3.21e | 62.00 ± 7.32f |
14 | 589.60 | 589.59 | Na I | 8.67 ± 2.42a | 2.26 ± 0.93b | 4.38 ± 1.48c | 3.28 ± 0.53b,c | 18.08 ± 2.31d | 44.06 ± 5.54e |
15 | 656.37 | 656.28 | H | 92.04 ± 20.31a,b | 96.55 ± 19.04b | 84.53 ± 17.31a,c | 99.55 ± 12.95b | 77.03 ± 19.51c | 86.41 ± 16.56a |
16 | 715.81 | 715.67 | O I | 8.72 ± 3.14a,b | 8.67 ± 1.94a,b | 8.13 ± 1.96a,c | 10.08 ± 1.56d | 7.49 ± 2.74c | 9.37 ± 1.86b,d |
17 | 742.49 | 742.36 | N I | 27.09 ± 9.86a | 27.60 ± 6.34a | 27.09 ± 6.48a | 32.55 ± 4.76b | 24.32 ± 8.94a | 31.54 ± 6.09b |
18 | 744.30 | 744.23 | N I | 55.62 ± 20.48a | 56.49 ± 13.02a | 55.69 ± 13.34a | 66.12 ± 9.64b | 49.59 ± 18.07a | 66.20 ± 12.67b |
19 | 746.92 | 746.83 | N I | 97.98 ± 36.16a,b | 99.25 ± 22.13b | 97.42 ± 23.14a,b | 115.17 ± 16.63c | 86.51 ± 31.62a | 115.14 ± 22.01c |
20 | 766.57 | 766.49 | K I | 11.09 ± 3.25a | 11.56 ± 1.82a | 15.06 ± 1.74b | 23.04 ± 3.59c | 19.73 ± 2.73d | 6.60 ± 1.14e |
21 | 769.97 | 769.90 | K I | 8.67 ± 2.71a | 9.19 ± 1.63a | 12.11 ± 1.49b | 18.71 ± 3.08c | 15.93 ± 2.24d | 5.17 ± 0.83e |
22 | 777.47 | 777.19 | O I | 247.36 ± 86.94a | 256.27 ± 57.14a,b | 251.38 ± 58.87a | 282.16 ± 39.91b | 217.06 ± 73.11c | 284.15 ± 52.33b |
23 | 818.57 | 818.49 | N I | 87.02 ± 32.60a | 88.64 ± 20.21a | 85.78 ± 20.64a | 99.72 ± 14.36b | 75.30 ± 27.25c | 98.93 ± 19.18b |
24 | 818.86 | 818.80 | N I | 100.44 ± 36.69a,b | 100.40 ± 21.59a,b | 94.75 ± 22.35a,c | 111.12 ± 16.03b | 83.57 ± 30.02c | 111.82 ± 21.10b |
25 | 820.15 | 820.04 | N I | 32.89 ± 12.77a | 32.97 ± 7.34a | 31.25 ± 7.63a,b | 37.26 ± 5.29c | 27.92 ± 10.19b | 37.42 ± 7.27c |
26 | 821.14 | 821.07 | N I | 58.82 ± 21.19a,b | 56.65 ± 12.37a,b | 53.41 ± 12.62a,c | 63.39 ± 8.95b,d | 47.67 ± 17.13c | 63.93 ± 12.38d |
27 | 821.73 | 821.63 | N I | 248.81 ± 86.24a | 253.70 ± 53.64a,b | 244.93 ± 57.61a | 285.55 ± 41.05c | 215.51 ± 77.86d | 278.54 ± 51.68b,c |
28 | 822.28 | 822.31 | N I | 54.39 ± 23.15a | 53.31 ± 13.41a | 52.52 ± 12.38a | 62.73 ± 8.90b | 47.79 ± 16.98a | 70.90 ± 14.55c |
29 | 822.43 | Unknown | Unknown | 60.74 ± 20.81a | 59.80 ± 12.69a | 57.26 ± 13.28a | 70.97 ± 10.30b | 53.47 ± 19.36a | 68.50 ± 13.32b |
30 | 824.36 | 824.24 | N I | 54.59 ± 19.07a | 54.14 ± 11.57a | 51.45 ± 11.82a | 64.01 ± 9.25b | 47.99 ± 17.54a | 62.25 ± 11.95b |
31 | 844.73 | 844.68 | O I | 183.54 ± 61.68a,b | 182.26 ± 36.66a,b | 169.94 ± 38.41a,c | 198.32 ± 28.27b | 153.31 ± 51.96c | 201.58 ± 36.31b |
32 | 856.86 | 856.77 | N I | 23.77 ± 8.77a | 23.73 ± 5.17a | 21.86 ± 5.12a,b | 27.16 ± 4.05c | 20.11 ± 7.24b | 26.96 ± 5.20c |
33 | 859.54 | 859.40 | N I | 34.89 ± 12.63a,b | 32.32 ± 6.30a | 28.32 ± 6.42c | 36.00 ± 5.57a,b | 27.24 ± 10.09c | 37.10 ± 7.24b |
Sample | Model | Accuracy | Mean Average Precision |
---|---|---|---|
Mixture of acacia honey and multi-floral honey | LDA | 84.1% | 80.1% |
SVM | 83.1% | 79.3% | |
Acacia honey | LDA | 74.1% | 86.9% |
SVM | 82.6% | 89.5% | |
Multi-floral honey | LDA | 98.6% | 95.1% |
SVM | 99.7% | 99.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, L.; Liu, F.; Zhou, F.; Peng, J.; Sun, M. Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis. Sensors 2020, 20, 1878. https://doi.org/10.3390/s20071878
Zhao Z, Chen L, Liu F, Zhou F, Peng J, Sun M. Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis. Sensors. 2020; 20(7):1878. https://doi.org/10.3390/s20071878
Chicago/Turabian StyleZhao, Zhangfeng, Lun Chen, Fei Liu, Fei Zhou, Jiyu Peng, and Minghua Sun. 2020. "Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis" Sensors 20, no. 7: 1878. https://doi.org/10.3390/s20071878
APA StyleZhao, Z., Chen, L., Liu, F., Zhou, F., Peng, J., & Sun, M. (2020). Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis. Sensors, 20(7), 1878. https://doi.org/10.3390/s20071878