Next Article in Journal
ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges
Previous Article in Journal
Application of Microfluidic Chip Technology in Food Safety Sensing
Open AccessArticle

Assessing Soil Organic Matter Content in a Coal Mining Area through Spectral Variables of Different Numbers of Dimensions

1
Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
2
Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China
3
Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the Ministry of Natural Resources & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
4
College of Water Sciences, Beijing Normal University, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(6), 1795; https://doi.org/10.3390/s20061795
Received: 10 February 2020 / Revised: 18 March 2020 / Accepted: 20 March 2020 / Published: 24 March 2020
(This article belongs to the Section Optical Sensors)
Soil organic matter (SOM) is a crucial indicator for evaluating soil quality and an important component of soil carbon pools, which play a vital role in terrestrial ecosystems. Rapid, non-destructive and accurate monitoring of SOM content is of great significance for the environmental management and ecological restoration of mining areas. Visible-near-infrared (Vis-NIR) spectroscopy has proven its applicability in estimating SOM over the years. In this study, 168 soil samples were collected from the Zhundong coal field of Xinjiang Province, Northwest China. The SOM content (g kg−1) was determined by the potassium dichromate external heating method and the soil reflectance spectra were measured by the spectrometer. Two spectral feature extraction strategies, namely, principal component analysis (PCA) and the optimal band combination algorithm, were introduced to choose spectral variables. Linear models and random forests (RF) were used for predictive models. The coefficient of determination (R2), root mean square error (RMSE), and the ratio of the performance to the interquartile distance (RPIQ) were used to evaluate the predictive performance of the model. The results indicated that the variables (2DI and 3DI) derived from the optimal band combination algorithm outperformed the PCA variables (1DV) regardless of whether linear or RF models were used. An inherent gap exists between 2DI and 3DI, and the performance of 2DI is significantly poorer than that of 3DI. The accuracy of the prediction model increases with the increasing number of spectral variable dimensions (in the following order: 1DV < 2DI < 3DI). This study proves that the 3DI is the first choice for the optimal band combination algorithm to derive sensitive parameters related to SOM in the coal mining area. Furthermore, the optimal band combination algorithm can be applied to hyperspectral or multispectral images and to convert the spectral response into image pixels, which may be helpful for a soil property spatial distribution map. View Full-Text
Keywords: visible and near-infrared spectroscopy; principal component analysis; optimal band combination algorithm; random forest; three-dimensional slice map visible and near-infrared spectroscopy; principal component analysis; optimal band combination algorithm; random forest; three-dimensional slice map
Show Figures

Graphical abstract

MDPI and ACS Style

Zhu, C.; Zhang, Z.; Wang, H.; Wang, J.; Yang, S. Assessing Soil Organic Matter Content in a Coal Mining Area through Spectral Variables of Different Numbers of Dimensions. Sensors 2020, 20, 1795.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop