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Abstract: This study evaluated whether wavelet functions (Bior1.3, Bior2.4, Db4, Db8, Haar, Sym4,
and Sym8) and decomposition levels (Levels 3–8) can estimate soil properties. The analysis is based
on the discrete wavelet transform with partial least-squares (DWT–PLS) method, incorporated
into a visible and near-infrared reflectance analysis. The improved DWT–PLS method (called
DWT–Stepwise-PLS) enhances the accuracy of the quantitative analysis model with DWT–PLS.
The cation exchange capacity (CEC) was best estimated by the DWT–PLS model using the Haar
wavelet function. This model yielded the highest coefficient of determination (Rv

2 = 0.787, p < 0.001),
with the highest relative percentage deviation (RPD = 2.047) and lowest root mean square error
(RMSE = 4.16) for the validation data set of the CEC. The RPD of the SOM predictions by DWT–PLS
using the Bior1.3 wavelet function was maximized at 1.441 (Rv

2 = 0.642, RMSE = 5.96), highlighting
the poor overall predictive ability of soil organic matter (SOM) by DWT–PLS. Furthermore, the best
performing decomposition levels of the wavelet function were distributed in the fifth, sixth, and
seventh levels. For various wavelet functions and decomposition levels, the DWT–Stepwise-PLS
method more accurately predicted the quantified soil properties than the DWT–PLS model.
DWT–Stepwise-PLS using the Haar wavelet function remained the best choice for quantifying
the CEC (Rv

2 = 0.92, p < 0.001, RMSE = 4.91, and RPD = 3.57), but the SOM was better predicted by
DWT–Stepwise-PLS using the Bior2.4 wavelet function (Rv

2 = 0.8, RMSE = 5.34, and RPD = 2.24)
instead of the Bior1.3 wavelet function. However, the performance of the DWT–Stepwise-PLS
method tended to degrade at high and low decomposition levels of the DWT. These degradations
were attributed to a lack of sufficient information and noise, respectively.

Keywords: Vis-NIR hyper-spectral; DWT; wavelet function; decomposition levels; PLS; Stepwise-PLS

1. Introduction

Soil quality mainly depends on the chemical and physical properties of the soil, which are
estimated by the cumulative effects of natural factors involved in its formation, including climate,
topography, parent material, biological activity, and time [1]. The development of precision
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agriculture requires a quantitative analysis technology that can accurately and quickly elucidate
the physicochemical properties of soils over a large area. Routine soil testing is recognized as basic
techniques for estimating soil properties [2]; however, the traditional soil testing and granulometric
analyses are relatively slow and expensive, because a large number of soil samples is needed for
mapping the spatial variation in the managed field [3].

The visible and near infrared reflectance analysis (Vis-NIRA) technique has emerged as a possible
enhancer or replacer of traditional soil testing methods. Using the Vis-NIRA technique, many
researchers have related soil properties to spectroscopic soil reflectance data [4–11]. However, because
the extremely large volume of hyper-spectral data and visible and near-infrared hyper-spectra are
difficult to interpret directly, since they contain overlapping weak overtones and combinations of
fundamental vibrational bands, identifying the critical spectral features that estimate the soil properties
is a difficult task.

Besides containing many redundancies, soil reflectance hyper-spectral data are affected by the
soil surface roughness, soil moisture, various environmental noises, and various other factors [12].
Therefore, to provide a good dataset for soil reflectance spectroscopy, the noise should be removed as
far as possible while preserving the spectral details. The discrete wavelet transform (DWT) is a wavelet
transform technique that extracts the features of hyper-spectral data, and has been popularly applied
to spectroscopic analysis [7,13–17]. The DWT is an integral transformation, but can be decomposed
into a set of coefficients. In this way, the DWT can combine a set of mathematical building blocks
(basic functions) and reorganize the original data. The DWT transforms the eigenvalues obtained by
detailed and approximate signals, generating the coefficients as raw data containing the vast majority
of the original data characteristics, which is an important way of reducing the data dimensions [7,15].
The DWT is considered as an excellent method for predicting multiple soil properties. However,
although the scale of wavelet analysis has been discussed [14], the impact of multiple wavelet functions
on the prediction of soil properties has not been well studied. The widely varying properties of the
different wavelet functions will certainly affect the predicted soil properties. Therefore, this paper will
explore how different wavelet functions affect the prediction model of soil properties.

Predictive models are generally calibrated using the measured spectral datasets of soils with
known properties, and such datasets are assembled into spectral libraries [18]. The most popular
spectroscopic analysis methods are multiple linear regression (MLR), principal coefficients regression
(PCR), partial least-squares regression (PLS), and artificial neural networks (ANN) [6,19–21]. Partial
least-squares regression and multiple linear stepwise regression are considered the most appropriate
regression methods for spectral calibration and prediction of soil properties [22–24]. PLS has the
same overall framework as principal component regression, and includes multiple regression and
canonical correlation analyses [25]. As such, it can predict the number of suitable variables and
eliminate noise interference, retaining the useful data for traditional linear regression. Moreover,
PLS can extract the main determinant variables from soil reflectance spectroscopy data, reducing
the spectral dimension and enhancing the robustness of the established model. However, the PLS
method is inapplicable to data containing much useless information, because some of the independent
variables can be misinterpreted as explanatory powers and incorporated into the regression equation,
reducing the model accuracy [26]. Hyper-spectral data, which include a large volume of redundant
information and noise-distorted spectral shapes, fall into this category. The spectral noise is introduced
by sensor limitations and particle-size differences [27]. Hence, improving the PLS method for statistical
analysis of spectral data has become a main research focus [28–30]. Multivariate stepwise linear
regression (MSLR) finds and selects the variables exerting the most significant influences on the
dependent variables and outperforms ordinary meta-regression; however, this method cannot remove
the multi-collinearity between independent variables. In contrast, stepwise multiple regression
combined with the partial least-squares method can preliminarily deduct the information unrelated to
the response vector by an algebraic algorithm.
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The main objectives of this study were as follows: (a) to characterize the representativeness of
different wavelet functions and different decomposition scales in the prediction model, and (b) to
understand appropriateness of the improved regression analysis (Stepwise-PLS) in improving the
prediction accuracy of soil properties.

2. Materials and Methods

2.1. Soil Sample Preparation and Laboratory Analysis

For this study, 193 soil samples of Burozem and Cinnamon soil were collected from the Experimental
Station of Qingdao Agricultural University (Shandong Province, China) in 2014. The main parent
materials of Cinnamon soil consist of loess and lime, and its mineral composition is primarily hydromica,
montmorillonite, and kaolinite. The main parent materials of Burozem soil are non-calcareous eluvial
slope deposits and earthy deposits, and its mineral composition is primarily hydromica, kaolinite,
and vermiculite. For one certain soil type, the soil samples have similar parent materials, mineral
composition, and texture. The collected soil samples were air-dried for 72 h and then passed through a
4.75-mm aperture square-hole sieve to remove the coarse matter and organic debris. The physical and
chemical properties of the soil were measured as described by I.S.S.C.A.S. (1978) [31]. Briefly, the soil
organic matter (SOM) was estimated by K2Cr2O7 oxidation at 180 ◦C, and the cation exchange capacity
(CEC) was estimated by displacing the exchangeable cations on the soil particle surfaces with NH4+.
Each soil sample was measured in duplicate, and the main soil properties are summarized in Table 1.

Table 1. Statistical description of soil properties in soil samples.

Soil Properties 1 Number Maximum Minimum Mean StD CV (%)

SD(g/cm3) 193 1.53 0.64 1.15 0.11 9.82
PH 193 9.56 3.25 6.95 1.14 16.36

CEC(cmol/g) 193 50.10 2.76 19.58 7.97 40.71
SOM(g/kg) 193 44.38 1.34 14.55 7.70 52.93

1 SD: soil density; PH: soil PH value; CEC: cation exchange capacity; SOM: soil organic matter.

The hyper-spectral reflectance data were obtained from 350 to 2500 nm by an Analytical Spectral
Device spectroradiometer with a spectral resolution of 1.4 nm. The collected soil samples were
measured in a dark room in the laboratory. The field-of-view was 8◦, and the illumination was
provided by a 1000-W halogen lamp fixed 100 cm directly above the soil plane. To eliminate the effects
of soil moisture as much as possible, the soil samples were naturally air dried before the hyper-spectral
measurements. The soil samples were placed inside a circular black capsule with a diameter of 10 cm
and depth of 1 cm, and were leveled to a smooth surface with the edge of a spatula. In the present
laboratory experiments, the reflectance between each reflectance measurement was standardized using
a white Spectralon reference panel [32]. The visible and near infrared reflectance spectra of the soil
samples were converted to spectral reflectance by dividing them by the Spectralon reference panel.
These first derivative transformations are known to minimize the sample variations caused by changes
in the grinding and optical settings [21]. To eliminate the noise in the first derivative spectra, we
applied Savitzky–Golay smoothing [33] to the original reflectance spectra curve. In addition, like
most of the hyper-spectral prediction models of soil properties, this study takes the first derivative
of the spectral reflectance as an independent variable. Prior to the data analysis, six soil samples
yielded negative hyper-spectral data after the hyper-spectral measurements of all soil samples and
were discarded from our analysis.

We classified the original soil samples prior to data analysis. Combined with some previous
studies, there is a definite masking effect between soil properties. For example, Rossel’s studies [34]
have confirmed that the masking of other constituents by organic matter in hyper-spectral reflectance is
weakened by soil organic matter contents below 10 g/kg. Therefore, the classification of all soil samples
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is an essential preliminary work, in order to avoid the masking effect between soil properties. The soil
samples were selected on the condition that the soil properties to be predicted varied significantly
(with greater coefficients of variance (CV) values), whereas other properties changed slightly (with
lower CV values). In this study, we grouped the soil samples with soil organic matter contents below
10 g/kg into the A group, which was used as the dataset for estimating CEC. On the other hand,
the soil samples with CEC values below 20 cmol/g were selected into the B group, which was used as
a data set for estimating SOM.

The soil samples were randomly selected from groups A and B at a 7:3 ratio to get calibration and
validation data sets, respectively. The A group dataset (69 soil samples) was split into 49 randomly
selected samples for calibration, and the remaining 20 soil samples were reserved for validation.
Similarly, the B group dataset (114 soil samples) was split into 90 randomly selected samples for
calibration, and 34 samples for validation. The soil properties in the soil samples are statistically
described in Table 2.

Table 2. Statistical description of soil properties in soil samples for groups A and B.

Groups
Number

Maximum Minimum Average StD CV (%)
Calibration Validation

A group
SD(g/cm3) 49 20 1.41 0.93 1.17 0.11 9.40

PH 49 20 9.56 3.30 6.65 1.29 19.40
CEC(cmol/g) 49 20 50.1 2.76 17.37 9.43 54.29
SOM(g/kg) 49 20 9.77 1.34 6.25 2.37 37.92

B group
SD(g/cm3) 90 34 1.53 0.64 1.15 0.12 10.43

PH 90 34 9.52 3.25 6.70 1.20 17.91
CEC(cmol/g) 90 34 19.68 3.49 13.60 3.70 27.21
SOM(g/kg) 90 34 44.38 1.54 11.71 7.58 64.73

2.2. Discrete Wavelet Transform (DWT)

Wavelet analysis theory has been extensively reported in previous literature, so it is only briefly
introduced here. DWT is ideally suited to spectral feature extraction, most fundamentally because it
performs a multi-scale analysis of the signal [35]. DWT can be mathematically expressed as a finite
length sequence and a discrete wavelet basis of the inner product, where each inner product factor is a
discrete wavelet transform [13]. The DWT coefficients are expressed as follows:

W f (j, k) =
N−1

∑
n = 0

f (n)ψ∗j,k(n) (1)

where W f (j, k) is the value of DWT coefficient; f (n) is a sequence of length n. The discrete wavelet
basis is given by

ψ∗j,k(n) =
1√
S0

j
ψ

(
n− S0

j,k

S0
j

)
(2)

where S0
j and S0

j,k correspond to the discrete wavelet scale and the translation parameters, respectively,
and the superscript * denotes the complex conjugate. For a binary wavelet, S0 = 2. To classify
the detailed information into approximate scale categories, the hyper-spectral signal is projected
onto a wavelet function. This approach is superior to other analytical methods. Unlike the Fourier
transform, the scale transformation of a discrete wavelet transform is carried out on wavelets with
non-unique and irregular fundamental waves, largely different waveforms of the fundamental waves,
and largely different support lengths and regularity. The signal processing of different wavelet signals
in the same signal often yields large differences among the results, which inevitably affects the final
processing results. Therefore, the wavelet functions must be appropriately chosen for hyper-spectral
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pre-processing. The basic properties of the different wavelet functions available for DWT are given in
Table 3.

Table 3. Description of common wavelet function properties.

Wavelet Functions Haar Daubechies Biorthogonal Symlets

Wavelet abbreviation Haar Db Bior Sym
Representation form Haar DbN BiorNr.Nd SymN

Examples Haar Db4 Bior1.3 Sym8
Orthogonality

√ √
×

√

Biorthogonality
√ √ √ √

Compact Support
√ √ √ √

Discrete Wavelet Transform
√ √ √ √

support length 1 2N − 1 Reconstruct: 2Nr + 1
decomposition: 2Nd + 1 2N − 1

Function Symmetry Absolute Symmetry Approximate Symmetry ASymmetry Approximate Symmetry

‘
√

’ mean: Yes; ‘×’ mean: No.

Based on some previous studies [7,15], we selected seven wavelet functions (Haar, Bior1.3, Bior2.4,
Db4, Db8, Sym4, and Sym8), and explored their effects on the accuracy of the predicted model. Here,
the DWT was performed with the Wavelet toolbox in MATLAB Release 12b (Matrix Laboratory,
Math-Works, Natick, MA, USA).

2.3. Stepwise-Partial Regression Analysis

To eliminate the redundancy and noise in the hyper-spectral data, this study improves the partial
least-squares fitting. The error terms in the partial least-squares regression model are not normally
distributed, and their exact distribution is particularly difficult to discern. Therefore, the parameter
significances, which determine the choice of variables, cannot be tested by evaluating the parameter
statistics. Here we improve the partial least-squares model by proposing a variable selection method
in MSLR, based on the fitting error. We refer to this method as Stepwise-PLS. This article briefly
introduces the idea of improvement showed in Figure 1.

In this improved algorithm, all of the original variables are used in the PLS model fitting, and the
root-mean-square deviation (RMSE) is calculated as

RMSE =

√
∑n

i = 1(F(i)− A(i))2

n
(3)

where A(i) and F(i) are the actual and forecasted values, respectively.
The RMSE calculated by Equation (3) is set to E0. Next, one of the original variables are removed

each time, until all variables have passed through, and the remaining variables are reinserted into the
PLS model. The RMSE is calculated in each instance, and is set to E. The minimum value of RMSE
is computed (E = min (RMSE)) and compared with E0. If E < E0, the variable corresponding to the
minimum error is removed, presuming that its removal will improve the model precision. Conversely,
if E > E0, then all of the unfavorable variables are rejected, and all remaining variables are deemed
suitable for the PLS model. These series of algorithmic flows are coded and performed with Statistics
toolbox in MATLAB Release 12b (Matrix Laboratory, Math-Works, Natick, MA, USA).
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2.4. Regression Analysis Based on Discrete Wavelet Transform with Stepwise-Partial Least-Squares

To reduce the effects of the edge noise, the hyper-spectral measurements were acquired between
390 and 2437 nm. The first step computes the approximation and detailed coefficients of the
wavelet decomposition, which are used in the Stepwise-PLS regression analysis. Each soil reflectance
spectrum was subjected to eight levels of DWT. Combining the detailed and approximate signals
gives more complete coverage of the spectral information than the approximate or detailed signals
alone. The approximate coefficients are severely distorted when the decomposition level is too
high; conversely, when the decomposition level is too low, the information in the approximate
coefficients is too verbose. After several attempts, the approximate signal was optimized at four
levels. Hence, after obtaining the detailed coefficients at levels 3, 4, 5, 6, 7, and 8, the original reflectance
spectroscopy was replaced with the approximation coefficients at level 4. The spectral signal was
decomposed into different wavelet functions at level 6, and a single branch was reconstructed from the
approximated DWT coefficients at level 4, as well as the detailed DWT coefficients at level 6 (Figure 2).
The approximate coefficients were nearly independent of the level, but the signals of the detailed
coefficient reconstruction were influenced by the different wavelet functions. Therefore, one must try
different wavelet functions in the prediction model and find the best wavelet function, as well as its
appropriate decomposition level. Meanwhile, to compare the application effects of the stepwise and
standard PLS methods, we regressed the wavelet coefficients of the various wavelet functions and
their decomposition levels using the two PLS methods. When performed by PLS and Stepwise-PLS,
these approaches were named DWT–PLS and DWT–Stepwise-PLS, respectively.

With reference to previous studies, the predictive ability of the DWT–PLS and DWT–Stepwise-PLS
method was assessed by four indicators: the coefficient of determination R2, the p value,
root-mean-square deviation (RMSE), and the relative percentage deviation (RPD). R2 represented the
calibration measures of the models, and Rv

2, RMSE, and RPD represented the validation measures of
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the models. Along with the p value, R2 also evaluates the degree of correlation between the predicted
and true values. As the RMSE is a parameter in the Stepwise-PLS model, it was excluded as an
evaluation indicator of the model’s calibration results, but was added as an effective evaluation
indicator of the model’s validation results. The RMSE and RPD define the accuracy of the error
between the predicted and true values. Mathematically, RPD defines the ratio of the sample standard
deviation (StD) to the RMSE (StD/RMSE). According to related research [36], models with RPD values
below 1.0 are very poor predictive performers, and their use is not recommended. Models with RPD
values between 1.0 and 1.4 are also poor performers, and can distinguish only high and low values.
When the RPD values is between 1.4 and 1.8, the model is a fair performer, and is useful for assessment
and correlation. Models with RPD values between 1.8 and 2.0 are sufficiently accurate for quantitative
predictions, and those with RPD values between 2.0 and 2.5 are high-quality quantitative predictors.
Any model with an RPD values above 2.5 makes excellent predictions.
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approximate coefficients and fourth-level detailed coefficients of different wavelet functions.

Furthermore, in order to directly compare the DWT–PLS and DWT–Stepwise-PLS model,
the difference between the R2 values of DWT–PLS and DWT–Stepwise-PLS were used to compare
the model efficiencies, and were defined as the R2 D-value. Additionally, the difference between the
RMSE of DWT–PLS and DWT–Stepwise-PLS were defined as the RMSE D-value. Some statistical
parameters of RPD for DWT–PLS and DWT–Stepwise-PLS models are also calculated: the maximum
value, minimum value, and average value of PRD at different decomposition levels of the same wavelet
functions; and the difference (D-value) of PRD between DWT–Stepwise-PLS and DWT–PLS.
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3. Results and Discussion

3.1. Characteristics of Soil Properties

Table 1 lists the maxima, minima, means, standard deviations (StD), and coefficients of variance
(CV) of the soil properties. The soil densities (SD) of the soil samples vary between 0.64 and 1.53, and
their average is 1.15 g/cm3. The StD and CV are both low (StD = 0.11; CV = 9.82). The soil samples
cover alkaline, acidic, and neutral soils with pH levels between 9.56 and 3.25. The CEC of the soil
samples range from 2.76 to 50.10, with StD and CV values of 7.97 and 40.71, respectively. Similarly,
the SOM range from 1.34 to 44.38, with StD and CV of 7.70 and 52.93, respectively. Clearly, the densities
and pH of soil samples have lower StD and CV values than the SOM and CEC.

Prior to spectral analysis, we must determine the intrinsic relationships between the soil density,
pH, SOM, and CEC of the soils. The correlation coefficients between pairs of soil density, pH, SOM,
and CEC values are shown in Table 4. There are no significant correlations between the soil properties,
implying that these four indexes are individual and representative of the study area.

Table 4. Pearson’s correlation coefficients (R) between soil properties for tested soil properties.

Soil Properties pH SD SOM CEC

pH 1.000 - - -
SD 0.139 1.000 - -

SOM 0.105 −0.108 1.000 -
CEC 0.228 0.040 0.295 1.000

3.2. Reflectance Spectral Feature of Soil Properties

Panels (a) and (b) of Figure 3 show the average spectral reflectance of the soil samples and their
first derivatives, respectively. The first derivatives of the soil reflectance contain more absorption
bands, and hence much more SOM and CEC information than the raw average spectral reflectance.
The absorption bands in the first derivatives appear near 566 nm, 1418 nm, 1918 nm, and 2205 nm.

Figure 4 plots the Pearson’s correlation coefficients between the first derivative of the reflection
spectrum and the soil properties as functions of wavelength. As indicated in Figure 4, SOM has more
absorption bands than CEC, with characteristic spectral peaks at 1388 nm, 1888 nm, 2182 nm, and
2303 nm for positive correlations, and with characteristic spectral peaks at 732 nm, 1257 nm, 1469 nm,
and 2022 nm for negative correlations. Many of these absorption bands are immediately attributable
to organic matter (such as absorptions by hydroxyl (O–H) stretching vibrations near 1469 nm and
1888 nm, and aliphatic C–H stretching near 2182 nm [15]). The absorption spectral bands of CEC
appear at 710 nm, 1274 nm, 1442 nm, and 1966 nm (all negative correlations).

Obviously, the negatively-correlated absorption bands of the SOM and CEC are very similar,
indicating that the characteristic reflection bands of the SOM and CEC probably overlap (masking
effect). This masking effect of spectral features is common, which complicates the spectral analysis.
Therefore, the classification of soil samples is necessary before analyzing the quantitative prediction
model (Section 2.1).

According to the Table 2, the CVs of all soil properties (except CEC) are below 40%, indicating
that the pH, soil density, and SOM exert limited impacts on the CEC in the spectral analysis. The StDs
and CVs of the pH and soil density are very small, meaning that the variations in these properties (pH
and soil density) are insufficient for effective modeling. Moreover, because of their small CV, their
spectral features are easily covered by the SOM and CEC features (Figure 4). Hence, in the following
discussion, the pH and soil density are treated only as simple comparison items, while the SOM and
CEC (which are important indicators of soil fertility) are the main variables in the spectral analysis.
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3.3. Regression Analysis Based on Discrete Wavelet Transform with Partial Least-Squares

3.3.1. Calibration of the Discrete Wavelet Transform with Partial Least-Squares Model

The calibration results of DWT–PLS are summarized in Table 5. The SOM and CEC prediction
models established by DWT–PLS perform well on the calibration dataset in this study. Moreover,
the DWT–PLS models perform better at levels 5, 6, 7, and 8 of the DWT than at levels 3 and 4, with
a larger R2 (Table 5), meaning that higher decomposition levels improve the performance of the
DWT–PLS model, which quantitatively predicts the SOM and CEC values. In the calibration set of the
quantitative CEC prediction, the R2 values yielded by the DWT–PLS models using the Haar, Sym8,
and Db4 wavelet functions were 0.97, 0.97, and 0.92, respectively (all > 0.90).

In the calibration set of the quantitative SOM prediction, the R2 values (again > 0.90) yielded by
DWT–PLS models using the Bior2.4, Haar, Sym4, and Sym8 wavelet functions were 0.95, 0.91, 0.91,
and 0.91, respectively. Table 5 also lists the number of variables used in the DWT–PLS models of the
CEC and SOM predictions. Because the SOM spectrum has more absorption bands than the CEC
spectrum (Figure 4), the coefficients of the DWT–PLS prediction model are generally more variable for
SOM than for CEC.

Table 5. Coefficient of determination (R2) values and number of variables (N) used in discrete wavelet
transform with partial least-squares (DWT–PLS) models for CEC and SOM in calibration set.

Indicators R2 N

Levels 3 4 5 6 7 8 3 4 5 6 7 8

CEC
Bior1.3 0.82 ** 0.83 ** 0.86 ** 0.81 ** 0.85 ** 0.86 ** 7 11 10 10 10 11
Bior2.4 0.67 ** 0.41 * 0.78 * 0.76 ** 0.72 ** 0.41 * 9 12 12 12 12 14
Db4 0.70 ** 0.73 ** 0.92 ** 0.91 ** 0.87 ** 0.90 ** 7 12 10 10 10 12
Db8 0.53 ** 0.52 ** 0.62 ** 0.72 ** 0.65 ** 0.66 ** 8 12 11 10 12 13
Haar 0.68 ** 0.61 ** 0.82 ** 0.97 ** 0.93 ** 0.85 ** 7 12 10 10 11 11
Sym4 0.70 ** 0.51 ** 0.73 ** 0.88 ** 0.77 ** 0.77 ** 8 12 11 11 12 13
Sym8 0.68 ** 0.61 ** 0.82 ** 0.97 ** 0.93 ** 0.55 ** 8 11 10 11 11 13

SOM
Bior1.3 0.66 ** 0.83 ** 0.75 ** 0.78 ** 0.84 ** 0.83 ** 7 16 12 11 13 16
Bior2.4 0.89 ** 0.92 ** 0.90 ** 0.95 ** 0.92 ** 0.83 ** 9 14 14 14 14 15
Db4 0.81 ** 0.59 ** 0.75 ** 0.72 ** 0.61 ** 0.49 * 10 16 12 12 15 16
Db8 0.77 ** 0.59 ** 0.83 ** 0.69 ** 0.62 ** 0.46 * 10 20 13 13 17 19
Haar 0.87 ** 0.85 ** 0.82 ** 0.91 ** 0.90 ** 0.87 ** 8 14 10 10 11 13
Sym4 0.80 ** 0.84 ** 0.86 ** 0.91 ** 0.90 ** 0.92 ** 9 15 12 12 12 13
Sym8 0.87 ** 0.85 ** 0.82 ** 0.91 ** 0.90 ** 0.87 ** 10 16 13 13 14 14

* p < 0.01; ** p < 0.001

3.3.2. Validation of the Discrete Wavelet Transform with Partial Least-Squares Model

The validation results of the DWT–PLS model are shown in Figures 5 and 6. All wavelet functions
used in the DWT–PLS model showed different prediction results for SOM and CEC. Among the
DWT–PLS models for CEC prediction, DWT–PLS with the Haar wavelet function gave the highest
Rv

2, lowest RMSE, and highest RPD values (0.787, 4.16, and 2.047, respectively), meaning that the
Haar wavelet function maximizes the performance of the DWT–PLS model in the validation dataset.
Viscarra-Rossel [10] observed an R2 value (0.73) close to this study for CEC prediction in the Vis-NIR
by PLS method; Pinheiro et al. [37] also observed similar R2 values (0.68), RMSE values (5.86), and
RPD values (1.17) for CEC prediction in the Vis-NIR by PLS method. Moreover, the maximum RPD
of DWT–PLS, regardless of wavelet function, is distributed around levels 5, 6, and 7, and remains
relatively stable over those levels (Figure 5c). These results show the obvious advantages of levels 5, 6,
and 7 over the other levels. According to previous studies [7], lower-level DWT coefficients introduce
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high-frequency noise that affects the model predictions; conversely, higher-level DWT coefficients filter
much of the available spectral information, also decreasing the predictive ability of the model.

As shown in Figures 5a and 6a, the validation results of CEC are better overall than those of SOM.
The RPD of the SOM predictions by DWT–PLS was maximized at 1.441 (Rv

2 = 0.637, RMSE = 5.73),
highlighting the poor overall predictive ability of SOM by DWT–PLS. Vohland et al. [38] also observed
a similar R2 value, RMSE value, and RPD value (0.60, 0.41, and 1.58 respectively) for soil organic C
prediction in the Vis-NIR by the PLSR method. The SOM predictions also lack the regularity of the
CEC results with regard to the optimal decomposition-level distributions and the optimal wavelet
functions in the DWT–PLS model. The SOM prediction model has more the variables of the DWT–PLS
prediction model than the CEC (Table 5). This results are similar to the study results of Dunn et al. [39],
who predicted CEC (R2 = 0.9, RPD = 3.3) with higher levels of accuracy than soil organic C (R2 = 0.66,
RPD = 1.7) in the Vis-NIR by the PLS method. Although more variable factors capture more information
from the soil reflectance spectra, increasing the number of variable factors in the DWT–PLS model
unfortunately introduced more unreasonable variables into the regression equations, increasing the
noise and errors.
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3.4. Improved Model Using Discrete Wavelet Transform with Stepwise-Partial Least-Squares and Model Comparison

3.4.1. Calibration and Validation Results of the Discrete Wavelet Transform–Stepwise-Partial Least
Squares Model

The DWT–Stepwise-PLS models for predicting CEC and SOM were calibrated on the same datasets
used for calibrating their DWT–PLS counterparts, with no additional processing. The DWT–Stepwise-PLS
model yielded a better calibration result than the DWT–PLS model; the R2 values of both models were very
close to 1 (Table 6). Note that when comparing the DWT–PLS models, the numbers (N) of the variables
are not significantly decreased in the DWT–Stepwise-PLS models with the same wavelet function and
decomposition level (Tables 5 and 6). This result implies that the DWT–Stepwise-PLS method selects
more effective variables than DWT–PLS.

The validation results of the DWT–Stepwise-PLS models for CEC and SOM are shown in Figures 7
and 8, respectively. The numbers in the grid are the Rv

2 values of the DWT–Stepwise-PLS for validation
datasets with various wavelet functions and decomposition levels (Figures 7a and 8a). The fill colors
of the grids represent the difference values (D-values) of Rv

2 between the DWT–Stepwise-PLS and
DWT–PLS methods. As the fill color approaches green (red), the D-values of the Rv

2 between the
DWT–Stepwise-PLS and DWT–PLS increase (decrease). Most of the grids are green or write, implying
that the DWT–Stepwise-PLS method better predicts the SOM and CEC in soils than DWT–PLS with
different wavelet functions and decomposition levels. Among the DWT–Stepwise-PLS models for
CEC prediction, DWT–Stepwise-PLS with the Haar wavelet function gave the highest Rv

2, RMSE, and
RPD (0.92, 4.91, and 3.57, respectively). CEC was accurately predicted by DWT–Stepwise-PLS, and
similar results have been reported in other studies [6,39]. DWT–Stepwise-PLS with the Bior2.4 wavelet
function gave the highest Rv

2, RMSE, and RPD (0.8., 5.34, and 2.24, respectively). These results are



Remote Sens. 2018, 10, 867 13 of 18

similar to the results of McCarty et al. [40], who observed close R2 values and RMSE values (0.82 and
5.5, respectively) for soil organic C prediction in the NIR by the PLSR method. Rossel et al. [10] also
observed similar R2 values (R2 = 0.60) and RMSE values (RMSE = 0.18) in the visible reflectance and
near-infrared reflectance for soil organic C prediction by the PLSR method.

Table 6. Coefficient of determination (R2) and number of variables (N) used in DWT–Stepwise-PLS
models for CEC and SOM in the calibration set.
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DWT–Stepwise-PLS predictions on the SOM validation dataset (c).

3.4.2. Characteristics of Wavelet Functions Representativeness

The RPD values of the DWT–Stepwise-PLS at levels 3–8 are shown in Figures 7b and 8b.
The average RPD of the CEC predicted by DWT–Stepwise-PLS was higher for the Haar and Sym8
wavelet functions (2.36 and 1.96, respectively; see Table 7) than for the other wavelet functions.
Moreover, according to the CEC validation results, the effect of DWT–Stepwise-PLS using the Haar
and Sym8 wavelet functions largely depends on the decomposition level of the DWT; the former
appears to be more effective at higher decomposition levels, whereas the latter tends to be relatively
stable at each level (Figure 7b).

The average RPDs of the SOM predictions by DWT–Stepwise-PLS using Bior2.4 and Sym4 were
1.63 and 1.73, respectively (Table 7), showing slight advantages of Bior2.4 and Sym4 over the other
wavelet functions. Similarly, most of the DWT–Stepwise-PLS models yielded higher Rv

2 values than
the DWT–PLS model (Figure 8). The DWT–Stepwise-PLS not only yielded a higher RPD with Sym4
than with Bior1.3, but was overall more stable with Sym4 than with the other wavelet functions.
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Table 7. Statistical description of relative percent deviation (RPD) between DWT–Stepwise-PLS models
and DWT–PLS models for CEC and SOM.

Wavelet 1
Minimum Maximum Average

DPLS DSPLS D-value DPLS DSPLS D-value DPLS DSPLS D-value

CEC
Bior1.3 1.48 1.45 −0.03 1.86 1.92 0.06 1.61 1.67 0.06
Bior2.4 1.14 1.27 0.14 1.44 2.02 0.58 1.23 1.65 0.41

Db4 1.30 1.54 0.24 1.56 1.98 0.42 1.45 1.71 0.26
Db8 1.23 1.37 0.15 1.94 2.18 0.24 1.56 1.77 0.21
Haar 1.33 1.41 0.08 2.05 3.57 1.52 1.73 2.36 0.62
Sym4 1.16 1.14 −0.02 1.81 1.81 0.00 1.45 1.54 0.10
Sym8 1.14 1.74 0.60 1.48 2.12 0.64 1.31 1.96 0.65

Average 1.25 1.42 0.16 1.73 2.23 0.50 1.48 1.81 0.33

SOM
Bior1.3 0.87 1.18 0.31 1.44 1.80 0.36 1.18 1.48 0.30
Bior2.4 1.17 1.33 0.17 1.42 2.24 0.82 1.28 1.63 0.35

Db4 0.86 0.92 0.06 1.24 1.58 0.34 1.07 1.30 0.23
Db8 0.74 0.87 0.13 1.24 1.62 0.38 1.03 1.26 0.23
Haar 0.93 0.97 0.04 1.41 1.63 0.22 1.16 1.40 0.23
Sym4 1.14 1.43 0.29 1.44 1.93 0.49 1.27 1.73 0.46
Sym8 1.06 1.28 0.22 1.36 1.73 0.37 1.21 1.46 0.26

Average 0.97 1.14 0.17 1.37 1.79 0.43 1.17 1.46 0.30
1 DPLS: DWT–PLS; DSPLS: DWT–Stepwise-PLS; D-value: RPD D-value (the difference value of RPD between
DWT–Stepwise-PLS and DWT–PLS.

3.5. Appropriateness of Discrete Wavelet Transform with Stepwise-Partial Least-Squares

The D-values of the maximum RPDs distributed around levels 5, 6, and 7 of the
DWT–Stepwise-PLS model exceeded the D-values of both average and minimum RPDs of the model
(Table 7), meaning that the low RPD values yielded by DWT–PLS are unlikely to be improved by
Stepwise-PLS. Therefore, the appropriateness of the Stepwise-PLS is not greatly related to the RPD of
the DWT–PLS predictions. Hence, we need to further explore whether the appropriateness is related
to the level of wavelet decomposition.

Although most of the results demonstrate an obvious advantage of DWT–Stepwise-PLS over
DWT–PLS, Stepwise-PLS reduces the prediction accuracy of CEC and SOM in isolated cases (Figures 7
and 8). There are about 384 wavelet coefficients in the three-level wavelet decomposition of DWT
(the exact number depends on the wavelet functions), revealing a significant amount of noise in the
low-level decomposition wavelet coefficients. The noisy data are problematic for variable selection by
the Stepwise-PLS method. The greater the number of variables, the more uncertain the Stepwise-PLS
method will be. Nearly 136 wavelet coefficients were generated, mainly consisting of the approximated
fourth-level signals and the detailed signals of the eighth-level decomposition. In the overall validation
results of CEC and SOM, the performance of Stepwise-PLS is degraded in the seventh and eighth
levels of Bior1.3 for the CEC prediction, in the first level of Bior1.3 and Bior2.4, and in the 7th level
of Bior2.4 for the SOM prediction (Figures 7a and 8a). Negative effects in the Stepwise-PLS method
appear when the decomposition level is low or high, indicating that high-level wavelet decomposition
over-compresses the spectral information. Therefore, inaccuracies in the Stepwise-PLS method may
arise from the screening of useless information. In the case of fewer variables, the negative effect of
this useless screening becomes significant.

This study explored the visible and near infrared reflectance analysis (Vis-NIRA) technique for
estimating soil properties. In the future, the development of a software package would be more helpful
for researchers who are interested in retrieving the large-scale soil properties, as was the case in our
study. In our current research, we mainly focused on CEC and SOM by visible and near infrared
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reflectance analysis. However, other soil properties are still challenging, which needs more efforts in
further research.

4. Conclusions

This study compared the appropriateness of inserting different wavelet functions with different
decomposition levels in the discrete wavelet transform with partial least-squares (DWT–PLS) method
into the conventional visible and near infrared reflectance analysis method for estimating soil properties.
The reliability and accuracy of the soil properties estimated by discrete wavelet transform-based visible
and near infrared reflectance analysis was enhanced by an improved partial least-squares method
called Stepwise-PLS. The main conclusions of this study are summarized below:

(1) In a feasibility study, the discrete wavelet transform with partial least-squares method was
applied to the quantitative analysis of soil properties. Varying the wavelet functions and their
distribution levels, we found that the fifth, sixth and seventh levels of the Haar wavelet function
benefitted from the discrete wavelet transform with partial least-squares estimation of cation exchange
capacity, maximizing the R2 and RPD values. However, no wavelet function showed a clear advantage
over the other functions in the discrete wavelet transform with partial least-squares method estimation
of soil organic matter.

(2) The discrete wavelet transform with stepwise-partial least squares method, with various
wavelet functions and decomposition levels, effectively improved the prediction accuracy of the cation
exchange capacity and soil organic matter estimated by the Vis-NIRA method. Further analysis of
the results confirmed that the appropriateness of discrete wavelet transform with stepwise-partial
least-squares method is not significantly related to the RPD values of the predicted soil properties, but
improves at the fifth, sixth, and seventh levels of the DWT. Therefore, the Stepwise-PLS method will
more likely obtain poorer results at lower and higher decomposition levels than at intermediate-to
moderately-high levels.
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