Improved Denoising of Structural Vibration Data Employing Bilateral Filtering
Abstract
:1. Introduction
1.1. Motivation
1.2. Background
1.3. Significance and Aims
1.4. Article Outline
2. Methodologies
2.1. Theory of Bilateral Filtering with Illustrative Example
2.2. Reference Filtering Methods
2.3. Signal-to-Noise Ratio (SNR)
2.4. Theory of the S Transform
2.5. Energy of the Spectrum
3. Evaluation Using Synthetic Signals
3.1. Dual-Frequency Chirp Signal
3.2. Structural Damped Free Vibration Signal
4. Evaluation Using Experimental Data
4.1. Test Setup and Procedure
4.2. Signal Processing and Results
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Worden, K.; Farrar, C.; Manson, G. The fundamental axioms of structural health monitoring. Proc. R. Soc. A 2007, 463, 1639–1664. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Adeli, H. Signal processing techniques for vibration-based health monitoring of smart structures. Arch. Comput. Methods Eng. 2016, 23, 1–15. [Google Scholar] [CrossRef]
- Yi, T.H.; Li, H.N.; Zhao, X.Y. Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique. Sensors 2012, 12, 11205–11220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Wang, X.; Zhou, Q. Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis. Sensors 2014, 14, 382–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makridakis, S.; Wheelwright, S.C. Adaptive filtering: An integrated autoregressive/moving average filter for time series forecasting. J. Oper. Res. Soc. 1977, 28, 425–437. [Google Scholar] [CrossRef]
- Bovik, A.C.; Huang, T.S.; Munson, D.C. The effect of median filtering on edge estimation and detection. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 2, 181–194. [Google Scholar] [CrossRef]
- Yang, J.N.; Lin, S.; Huang, H.; Zhou, L. An adaptive extended Kalman filter for structural damage identification. In Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures; Wiley & Sons: New York, NY, USA, 2006; Volume 13, pp. 849–867. [Google Scholar]
- Han, M.; Liu, Y.; Xi, J.; Guo, W. Noise smoothing for nonlinear time series using wavelet soft threshold. IEEE Signal. Process. Lett. 2007, 14, 62–65. [Google Scholar] [CrossRef]
- Wang, G.; Li, D.; Pan, W.; Zang, Z. Modified switching median filter for impulse noise removal. Signal. Process. 2010, 90, 3213–3218. [Google Scholar] [CrossRef]
- Bayissa, W.L.; Haritos, N.; Thelandersson, S. Vibration-based structural damage identification using wavelet transform. Mech. Syst. Signal. Process. 2008, 22, 1194–1215. [Google Scholar] [CrossRef]
- Miao, Q.; Tang, C.; Liang, W.; Pecht, M. Health assessment of cooling fan bearings using wavelet-based filtering. Sensors 2013, 13, 274–291. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Akujuobi, C.M.; Hamory, P.; Kloesel, K. An approach to vibration analysis using wavelets in an application of aircraft health monitoring. Mech. Syst. Signal. Process. 2007, 21, 1255–1272. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, J.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Feng, Z.; Dong, W. Vibration signal filtering algorithm based on singular value subspace decomposition. Rev. Téc. Ing. Univ. Zulia 2016, 39, 106–113. [Google Scholar]
- Zhao, X.Z.; Ye, B.Y. Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock. Mech. Syst. Signal. Process. 2011, 25, 1617–1631. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Boudraa, A.O.; Cexus, J.C.; Saidi, Z. EMD-based signal noise reduction. Int. J. Signal. Process. 2004, 1, 33–37. [Google Scholar]
- Jiang, F.; Zhu, Z.; Li, W.; Zhou, G.; Chen, G. Fault diagnosis of rotating machinery based on noise reduction using empirical mode decomposition and singular value decomposition. J. Vibroeng. 2015, 17, 164–174. [Google Scholar]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision (ICCV1998), Bombay, India, 4–7 January 1998. [Google Scholar]
- Paris, S.; Kornprobst, P.; Tumblin, J.; Durand, F. Bilateral filtering: Theory and applications. Found. Trends® Comput. Graph. Vis. 2009, 4, 1–73. [Google Scholar]
- Paris, S.; Kornprobst, P.; Tumblin, J.; Durand, F. A gentle introduction to bilateral filtering and its applications. In Proceedings of the ACM Siggraph 2007 courses (ACM 2007), San Diego, CA, USA, 5–9 August 2007. [Google Scholar]
- Liu, Y.; Li, C. Some methods for estimating the signal/noise ratio of seismic data. Oil Geophys. Prospect. 1997, 32, 257–262. [Google Scholar]
- Liu, Y.; Liu, C.; Wang, D. A 1D time-varying median filter for seismic random, spike-like noise elimination. Geophysics 2008, 74, V17–V24. [Google Scholar] [CrossRef]
- Qian, S.; Chen, D. Discrete gabor transform. IEEE Trans. Signal. Process. 1993, 41, 2429–2438. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal. Process. 2002, 44, 998–1001. [Google Scholar] [CrossRef]
- Ma, C.; Kamp, Y.; Willems, L.F. A Frobenius norm approach to glottal closure detection from the speech signal. IEEE Trans. Speech Audio Process. 1994, 2, 258–265. [Google Scholar]
- Grosse, C.U. Quantitative Zerstörungsfreie Prüfung von Baustoffen Mittels Schallemissionsanalyse und Ultraschall; Fakultät für Bauingenieur- und Vermessungswesen, University of Stuttgart: Stuttgart, Germany, 1996. [Google Scholar]
- Hafiz, A.; Schumacher, T. Monitoring of Stresses in Concrete Using Ultrasonic Coda Wave Comparison Technique. J. Nondestruct. Eval. 2018, 37. [Google Scholar] [CrossRef]
Type of Signal | Energy of Signal | Energy of Noise | SNR (dB) |
---|---|---|---|
Original noisy signal | 1000 | 99.3 | 10.0 |
Denoised signal using median filtering | 1000 | 17.2 | 17.6 |
Denoised signal using wavelet denoising | 1000 | 10.9 | 19.6 |
Denoised signal using bilateral filtering | 1000 | 9.82 | 20.1 |
Type of Signal | Energy of Signal | Energy of Noise | SNR (dB) |
---|---|---|---|
Original noisy signal | 22.8 | 6.92 | 5.18 |
Denoised signal using median filtering | 22.8 | 4.11 | 7.45 |
Denoised signal using wavelet denoising | 22.8 | 2.86 | 9.02 |
Denoised signal busing bilateral filtering | 22.8 | 2.71 | 9.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Schumacher, T. Improved Denoising of Structural Vibration Data Employing Bilateral Filtering. Sensors 2020, 20, 1423. https://doi.org/10.3390/s20051423
Liu N, Schumacher T. Improved Denoising of Structural Vibration Data Employing Bilateral Filtering. Sensors. 2020; 20(5):1423. https://doi.org/10.3390/s20051423
Chicago/Turabian StyleLiu, Ning, and Thomas Schumacher. 2020. "Improved Denoising of Structural Vibration Data Employing Bilateral Filtering" Sensors 20, no. 5: 1423. https://doi.org/10.3390/s20051423
APA StyleLiu, N., & Schumacher, T. (2020). Improved Denoising of Structural Vibration Data Employing Bilateral Filtering. Sensors, 20(5), 1423. https://doi.org/10.3390/s20051423