Stabilization of a p-u Sensor Mounted on a Vehicle for Measuring the Acoustic Impedance of Road Surfaces
Abstract
:1. Introduction
2. Life NEREIDE Project
- safety in urban areas by better draining;
- the reduction of waste materials and virgin materials;
- acoustical performances and a significant reduction of noise emitted;
- asphalt laying procedure, thus reducing air pollution emissions.
3. Methodology
4. Results
4.1. Instrumentation Height
4.2. Damping System
- Maximum allowable displacement xmax: 100 mm;
- Damping system with 1 degree of freedom placed along vertical axis;
- Typical vehicle frame displacement (x’): ±20 mm;
- Displacement stabilization range (error = htarget -h): 2 mm ÷ 5 mm;
- Working frequency: 0 Hz ÷ 30 Hz;
- Actuator load: 3 kg payload (loudspeaker, sensors, windscreen, laser distance sensor) plus damping system frame.
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Directive (European Commission) Directive 2002/49/EC of the European parliament and the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Communities 2002, 189, 2002.
- European Commission. Report from the Commission to the European Parliament and the Council on the Implementation of the Environmental Noise Directive in Accordance with Article 11 of Directive 2002/49/EC. COM/2017/015; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Héritier, H.; Vienneau, D.; Foraster, M.; Eze, I.C.; Schaffner, E.; Thiesse, L.; Brink, M. Transportation noise exposure and cardiovascular mortality: A nationwide cohort study from Switzerland. Eur. J. Epidemiol. 2017, 32, 307–315. [Google Scholar] [CrossRef]
- Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and ischemic heart disease: A meta-analysis. Environ. Res. 2015, 138, 372–380. [Google Scholar] [CrossRef]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.M.; Keidel, D.; Künzli, N.; Liu, L.J.S.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation noise and blood pressure in a population-based sample of adults. Environ. Health Perspect. 2011, 120, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A.S.; Katsouyanni, K.; Davou, E.; et al. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance. J. Acoust. Soc. Am. 2012, 132, 3788–3808. [Google Scholar] [CrossRef] [PubMed]
- Recio, A.; Linares, C.; Banegas, J.R.; Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: An integrative model of biological mechanisms. Environ. Res. 2016, 146, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Van Kempen, E.; Babisch, W. The quantitative relationship between road traffic noise and hypertension: A meta-analysis. J. Hypertens. 2012, 30, 1075–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Minichilli, F.; Gorini, F.; Ascari, E.; Bianchi, F.; Coi, A.; Fredianelli, L.; Licitra, G.; Manzoli, F.; Mezzasalma, L.; Cori, L. Annoyance judgment and measurements of environmental noise: A focus on Italian secondary schools. Int. J. Environ. Res. Public Health 2018, 15, 208. [Google Scholar] [CrossRef] [Green Version]
- Lechner, C.; Schnaiter, D.; Bose-O’Reilly, S. Combined Effects of Aircraft, Rail, and Road Traffic Noise on Total Noise Annoyance—A Cross-Sectional Study in Innsbruck. Int. J. Environ. Res. Public Health 2019, 16, 3504. [Google Scholar] [CrossRef] [Green Version]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Tiesler, C.M.; Birk, M.; Thiering, E.; Kohlböck, G.; Koletzko, S.; Bauer, C.P.; Berdel, D.; von Berg, A.; Babisch, W.; Heinrich, J. Exposure to road traffic noise and children’s behavioural problems and sleep disturbance: Results from the GINIplus and LISAplus studies. Environ. Res. 2013, 123, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onakpoya, I.J.; O’Sullivan, J.; Thompson, M.J.; Heneghan, C.J. The effect of wind turbine noise on sleep and quality of life: A systematic review and meta-analysis of observational studies. Environ. Int. 2015, 82, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Kim, M.; Jang, C.; Choung, T.; Sim, K.A.; Seo, D.; Chang, S. The Public Health Impact of Road-Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance. Sustainability 2018, 10, 2947. [Google Scholar] [CrossRef] [Green Version]
- Licitra, G.; Ascari, E.; Fredianelli, L. Prioritizing process in action plans: A review of approaches. Curr. Pollut. Rep. 2017, 3, 151–161. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Park, T.; Chang, S.; Kim, I. Reduction Effects of Shaped Noise Barrier for Reflected Sound. J. Civil Environ. Eng. 2015, 5, 1. [Google Scholar]
- Wong, M.; Wang, T.; Ho, H.; Kwok, C.; Lu, K.; Abbas, S. Towards a smart city: Development and application of an improved integrated environmental monitoring system. Sustainability 2018, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Merenda, F.G.; Praticò, R.; Fedele, R.; Carotenuto, F.G. Della Corte. A Real-time decision platform for the management of structures and infrastructures. Electronics 2019, 8, 1180. [Google Scholar] [CrossRef] [Green Version]
- Gori, P.; Guattari, C.; Asdrubali, F.; de Lieto Vollaro, R.; Monti, A.; Ramaccia, D.; Bilotti, F.; Toscano, A. Sustainable acoustic metasurfaces for sound control. Sustainability 2016, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Danihelová, A.; Němec, M.; Gergeľ, T.; Gejdoš, M.; Gordanová, J.; Sčensný, P. Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber. Sustainability 2019, 11, 2968. [Google Scholar] [CrossRef] [Green Version]
- Fredianelli, L.; Del Pizzo, A.; Licitra, G. Recent developments in sonic crystals as barriers for road traffic noise mitigation. Environments 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Ko, J.; Park, Y. Factors affecting electric vehicle sharing program participants’ attitudes about car ownership and program participation. Transp. Res. Part D Transp. Environ. 2015, 36, 96–106. [Google Scholar] [CrossRef]
- Kuijpers, A.; Van Blokland, G. Tyre/road noise models in the last two decades: A critical evaluation. In Proceedings of INTER-NOISE and NOISE-CON Congress and Conference; No. 2, 2494-2499; Institute of Noise Control Engineering: Washington, DC, USA, 2001. [Google Scholar]
- Sandberg, U.; Ejsmont, J. Tyre/Road Noise Reference Book; INFORMEX: Kisa, Sweden, 2002. [Google Scholar]
- Morgan, P.A.; Phillips, S.M.; Watts, G.R. The Localisation, Quantification and Propagation of Noise from a Rolling Tyre; TRL Limited: Berkshire, UK, 2007. [Google Scholar]
- Ögren, M.; Molnár, P.; Barregard, L. Road traffic noise abatement scenarios in Gothenburg 2015–2035. Environ. Res. 2018, 164, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Regulation (European commission) No 1222/2009 of the European Parliament and of the Council of 25 November 2009 on the labelling of tyres with respect to fuel efficiency and other essential parameters. Off. J. Eur. Union 2009, 342, 59.
- Kleizienė, R.; Šernas, O.; Vaitkus, A.; Simanavičienė, R. Asphalt Pavement Acoustic Performance Model. Sustainability 2019, 11, 2938. [Google Scholar] [CrossRef] [Green Version]
- Berengier, M.C.; Stinson, M.R.; Daigle, G.A.; Hamet, J.F. Porous road pavements: Acoustical characterization and propagation effects. J. Acoust. Soc. Am. 1997, 101, 155–162. [Google Scholar] [CrossRef]
- Losa, M.; Leandri, P.; Licitra, G. Mixture design optimization of low-noise pavements. Transp. Res. Rec. J. Transp. Res. Board 2013, 2372, 25–33. [Google Scholar] [CrossRef]
- Garbarino, E.; Quintero, R.R.; Donatello, S.; Wolf, O. Revision of green public procurement criteria for road design, construction and maintenance. In Procurement Practice Guidance Document; European Union: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- ISO. 11819-2:2017 Acoustics—Measurement of the Influence of Road Surfaces on Traffic Noise—Part 2: The Close-Proximity Method; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Biligiri, K.P. Effect of pavement materials’ damping properties on tyre/road noise characteristics. Constr. Build. Mater. 2013, 49, 223–232. [Google Scholar] [CrossRef]
- Licitra, G.; Moro, A.; Teti, L.; Del Pizzo, A.; Bianco, F. Modelling of acoustic ageing of rubberized pavements. Appl. Acoust. 2019, 146, 237–245. [Google Scholar] [CrossRef]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Fredianelli, L. Durability and variability of the acoustical performance of rubberized road surfaces. Appl. Acoust. 2015, 94, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Praticò, F.G.; Vaiana, R. A study on the relationship between mean texture depth and mean profile depth of asphalt pavements. Constr. Build. Mater. 2015, 101, 72–79. [Google Scholar] [CrossRef]
- Praticò, F.G. Roads and loudness: A more comprehensive approach. Road Mater. Pavement Des. 2001, 2, 359–377. [Google Scholar] [CrossRef]
- Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226. [Google Scholar] [CrossRef]
- ISO. EN ISO 10534-1, Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes Part 1: Method Using Standing Wave Ratio; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- ISO. 13472-1, Acoustics—Measurement of Sound Absorption Properties of Road Surfaces In Situ—Part 2: Spot Method for Reflective Surfaces; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. 13472-1, Acoustics—Measurement of Sound Absorption Properties of Road Surfaces In Situ Part 1: Extended Surface Method; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Morgan, P.A.; Watts, G.R. A novel approach to the acoustic characterisation of porous road surfaces. Appl. Acoust. 2003, 64, 1171–1186. [Google Scholar] [CrossRef]
- Praticò, F.G.; Fedele, R.; Vizzari, D. Significance and reliability of absorption spectra of quiet pavements. Constr. Build. Mater. 2017, 140, 274–281. [Google Scholar] [CrossRef]
- Praticò, F.G.; Vizzari, D.; Fedele, R. Estimating the resistivity and tortuosity of a road pavement using an inverse problem approach. In Proceedings of the ICSV24 24th International Congress on Sound and Vibration, London, UK, 23–27 July 2017. [Google Scholar]
- Allard, J.; Atalla, N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Liu, Y.; Jacobsen, F. Measurement of absorption with a p-u sound intensity probe in an impedance tube. Acoust. Soc. Am. J. 2005, 118, 2117–2120. [Google Scholar] [CrossRef] [Green Version]
- Lanoye, R.; Vermeir, G.; Lauriks, W.; Kruse, R.; Mellert, V. Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor. J. Acoust. Soc. Am. 2006, 119, 2826–2831. [Google Scholar] [CrossRef]
- Basten, T.G.; de Bree, H.E. Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor. J. Acoust. Soc. Am. 2010, 127, 264–270. [Google Scholar] [CrossRef]
- Brandão, E.; Lenzi, A.; Paul, S. A review of the in situ impedance and sound absorption measurement techniques. Acta Acust. United Acust. 2015, 101, 443–463. [Google Scholar] [CrossRef]
- Li, M.; van Keulen, W.; Tijs, E.; van de Ven, M.; Molenaar, A. Sound absorption measurement of road surface with in situ technology. Appl. Acoust. 2015, 88, 12–21. [Google Scholar] [CrossRef]
- Tijs, E.; de Bree, H.E. An in situ method to measure the acoustic absorption of roads whilst driving. In Proceedings of the German Annual Conference on Acoustics, Rotterdam, The Netherlands, 23–26 March 2009. [Google Scholar]
- Jacobsen, F. An overview of the sources of error in sound power determination using the intensity technique. Appl. Acoust. 1997, 50, 155–166. [Google Scholar] [CrossRef]
- Jacobsen, F.; de Bree, H.E. A comparison of two different sound intensity measurement principles. J. Acoust. Soc. America 2005, 118, 1510–1517. [Google Scholar] [CrossRef] [Green Version]
- Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- Lo Castro, F.; Iarossi, S.; De Luca, M.; Bernardini, M.; Brambilla, G.; Licitra, G. Life NEREiDE project: Preliminary evaluation of road traffic noise after new pavement laying. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Washington, DC, USA, 2019; Volume 259, pp. 5494–5501. [Google Scholar]
- ISO. 11819-1 Acoustics—Measurement of the Influence of Road Surfaces on Traffic Noise—Part 1: Statistical Pass-By Method; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- De Bree, H.E. The Microflown: An acoustic particle velocity sensor. Acoust. Aust. 2003, 31, 91–94. [Google Scholar]
- Davies, T.W. Modelling the response of a hot-wire anemometer. Appl. Math. Model. 1986, 10, 256–261. [Google Scholar] [CrossRef]
- De Bree, H.E.; Leussink, P.; Korthorst, T.; Jansen, H.; Lammerink, T.S.; Elwenspoek, M. The μ-flown: A novel device for measuring acoustic flows. Sens. Actuators A Phys. 1996, 54, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Yntema, D.R.; Druyvesteyn, W.F.; Elwenspoek, M. A four particle velocity sensor device. J. Acoust. Soc. Am. 2006, 119, 943–951. [Google Scholar] [CrossRef]
- Crocker, M.J.; Hanson, D.; Li, Z.; Karjatkar, R.; Vissamraju, K.S. Measurement of acoustical and mechanical properties of porous road surfaces and tire and road noise. Transp. Res. Rec. 2004, 1891, 16–22. [Google Scholar] [CrossRef]
Adrienne Method | Adopted Method Based On P-U Probe | |
---|---|---|
In-Situ Measurement | ✓ | ✓ |
Contactless Measurement | ✓ | ✓ |
Frequency Bandwidth | 250 Hz ÷ 4 kHz | 315 Hz ÷ 10 kHz |
Exposed Area Diameter | ≈ 1.4 m | ≈ 1.4 m |
Height of The Sound Source | 1.25 m | 1.5 m |
Height of The Sound Microphone / P-U Probe | 0.25 m | 0.16 m |
Absorption Coefficient Sensitivity to Receiver Height Variation (F ≥ 315) | 2.4 m−1 | 2.1 m−1 |
Absorption Coefficient Sensitivity to Source Height Variation (F ≥ 315) | 0.5 m−1 | 0.3 m−1 |
RMS of Average Displacement [mm] | |
---|---|
No stabilization | 11.5 |
Stabilization | 4.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, F.; Fredianelli, L.; Lo Castro, F.; Gagliardi, P.; Fidecaro, F.; Licitra, G. Stabilization of a p-u Sensor Mounted on a Vehicle for Measuring the Acoustic Impedance of Road Surfaces. Sensors 2020, 20, 1239. https://doi.org/10.3390/s20051239
Bianco F, Fredianelli L, Lo Castro F, Gagliardi P, Fidecaro F, Licitra G. Stabilization of a p-u Sensor Mounted on a Vehicle for Measuring the Acoustic Impedance of Road Surfaces. Sensors. 2020; 20(5):1239. https://doi.org/10.3390/s20051239
Chicago/Turabian StyleBianco, Francesco, Luca Fredianelli, Fabio Lo Castro, Paolo Gagliardi, Francesco Fidecaro, and Gaetano Licitra. 2020. "Stabilization of a p-u Sensor Mounted on a Vehicle for Measuring the Acoustic Impedance of Road Surfaces" Sensors 20, no. 5: 1239. https://doi.org/10.3390/s20051239
APA StyleBianco, F., Fredianelli, L., Lo Castro, F., Gagliardi, P., Fidecaro, F., & Licitra, G. (2020). Stabilization of a p-u Sensor Mounted on a Vehicle for Measuring the Acoustic Impedance of Road Surfaces. Sensors, 20(5), 1239. https://doi.org/10.3390/s20051239