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Abstract: Natural disasters and the poor management of civil engineering structures and
infrastructures require timely action and new tools such as specially designed structural health
monitoring platforms. This paper proposes an innovative platform based on a network of wirelessly
connected, low-power, and renewable-energy-fed sensor units. The platform is a multipurpose
tool for diagnostics, maintenance, and supervision, capable of simultaneously carrying out damage
detection, localization, identification, and “multiclass” and “multi-material” level quantification
of different types of failures. In addition, it works as a decision support tool for emergency
management and post-disaster assessment, here tailored for an Italian theme park. The platform
uses innovative algorithms based on the concept of the vibro-acoustic signature of the asset
monitored. The vibro-acoustic signatures of the monitored assets are gathered by the microphones and
accelerometers of the platform’s sensor units. Then, almost simultaneously, they are analyzed using
specifically designed wavelet-based and convolutional-neural-network-based algorithms, which are
able to extract crucial information about the structural and environmental conditions of both the
asset and the areas of the thematic park. In addition, the platform shows escape routes during an
emergency, indicating meeting points and helping people to proceed safely along a recognizable
escape route to a safe place, as demonstrated by the simulations.

Keywords: decision platform; emergency management; sensors network; structural health
monitoring; theme park

1. Introduction

Emergencies caused by interaction between catastrophic and accidental natural events, such as
earthquakes, sudden floods or fires, and deficiencies in appropriate management activities, increasingly
affect structures and infrastructures.

On the one hand, in order to manage these particular events, a high level of attention should be
paid during the design and management of the abovementioned assets. Such a level of attention should
be exponentially increased when highly populated areas, such as urban contexts (e.g., underground
station; see [1]), occasional gathering points for crowds where safety drills cannot be taught and
prepared [2], or theme parks [3], are involved.

On the other hand, it is difficult to find real applications for complex technologies such as
sensor-based monitoring platforms which are (i) included during the assets’ design; (ii) installed on
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existing assets to monitor their structural conditions; and (iii) designed to provide specific information
that can be a decisive support during emergency situations [4,5], e.g., enhancing evacuee safety in
order to reduce the number of injuries and deaths [6] or increasing the efficiency of the post-disaster
operations (e.g., search and rescue operations; see [7]). Furthermore, future smart cities will need
integrated monitoring and decision platforms to obtain smart infrastructures ensuring [8] high levels of
(a) comfort; (b) efficiency; (c) sustainability; and (d) autonomy (i.e., less dependent on or independent
from the management activities). In order to ensure this performance, some perspective changes are
needed. A good starting point could be the transition from fault-based maintenance to predictive
maintenance [9]. From this point of view, the traditional methods and technologies that assess the
conditions of the assets, which are the focus of failure-based maintenance, should be replaced with
innovative methods that provide useful information for predictive maintenance and define the proper
budget for maintenance interventions [10].

As is well known, destructive and test-based methods are commonly used to assess the “state of
health” of a structure. Even though this is a well-established and accurate approach, it is possible to
state that it can be now considered unsustainable because of its main drawbacks, i.e., (i) it needs energy
and resources to extract samples (e.g., cores); (ii) it provides local (i.e., sample-based) or incomplete
(i.e., visual-based) information; (iii) it lacks efficiency, simplicity, and attractiveness (in terms of costs
and applicability); (iv) samples are sent to landfill after the analyses; and (v) it does not offer a holistic
approach to overcome problems of different nature, i.e., related to different structures, materials, and
conditions [4].

Based on the drawbacks mentioned above, different new systems have been developed and
presented in the last decades to carry out the structural health monitoring (SHM) of civil engineering
structures and infrastructures, like buildings, bridges, and roads [11,12]. The systems mentioned
above have the following main characteristics: (i) they use nondestructive tests (NDTs) to carry out the
measurements and to collect data that represent the assets’ structural health conditions; and (ii) they
implement smart technologies to carry out more efficient and sustainable measurements and analyze
the data collected (often big data) during the measurements (e.g., information and communication
technologies, Internet of Things solutions, artificial intelligence, cloud computing, etc.; see [8,13]).

Despite the high number of NDT-SHM solutions proposed in recent years, none of these has a
sufficient level of development that allows for performing, at the same time, damage detection, location,
type identification, and level quantification (i.e., all the purposes of the SHM; see [14]). Furthermore,
they cannot be defined as “multiclass” or “multi-material”, i.e., they are not able to monitor different
types of failures (e.g., delamination and vertical cracks, or concealed and surface, etc., [15,16]) or
materials (e.g., asphalt concrete and cement concrete; see [4]).

Based on the above, in the study presented here, we propose an innovative NDT-SHM platform,
specially designed to be implemented in a theme park and aimed at providing crucial information on
the structural health status of the various types of structures. From the information gathered through
the platform, it is possible to effectively support the park’s emergency management, i.e., to identify
escape routes during an emergency, to deal with a predetermined emergency through well-designed
action plans, and to indicate the safe locations available after the disaster or collection points for the
crowds in the theme park. In order to ensure sustainability, efficiency, and reliability, the platform was
designed to include wireless low-power sensors powered by renewable energy (i.e., gathered though a
photovoltaic system). Appropriate algorithms for data processing were developed to extract crucial
information from the raw data collected by the sensors.

The main requirements of the following official regulations were taken into account during the
platform design: (i) Decision 1313/2013/EU (improvement of the civil protection systems for preventing,
preparing for, and responding to natural and man-made disasters); (ii) Regulation 525/2013/EU
(greenhouse gas emissions and climate change monitoring); (iii) Directives 2015/996/EC and 2002/49/EC
(assessment and control of environmental noise); and iv) Directive 2018/0129/EC (road infrastructure
safety management).
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Finally, the proposed platform shares some points with the European project SIBYL (which is
related to the seismic monitoring and vulnerability framework for civil protection; see [17]) and with
the Italian project PRIN2017XYM8KC (“Urban safety, sustainability, and resilience: 3 paving solutions,
4 sets of modules, 2 platforms.” Acronym: USR342.). Furthermore, it strongly complies with the Italian
regional project SICURVIA (in progress).

2. Platform Description

2.1. Objectives and Motivations

This section presents an innovative modular platform NDT-SHM specially customized to adapt
to the characteristics of a specific Italian theme park. It aims at minimizing the risks related to different
emergency scenarios (for example, earthquakes, fires, landslides, displacements, flash floods, excess
environmental warning thresholds, etc.) providing data and information of different nature in real
time, such as:

1. type, position, and possible extension of the potential failure or event occurred;
2. environmental conditions of the area involved in the emergency;
3. number of people probably involved (i.e., probably present in the area of interest);
4. safest and quickest predefined escape routes (e.g., roads and bicycle and pedestrian paths for

outdoors, stairs for indoors) that people involved should follow;
5. positions and sizes of predefined meeting points and places of ultimate or total safety (e.g.,

buildings, external space, etc.);
6. places where rapid and efficient first aid is needed;
7. safest and quickest routes for first aid;
8. access routes (internal and external) still available;
9. functioning status and performances of each platform’s component (self-diagnostic);
10. smoke alarms actually involved;
11. escape directions, primary exits, alternative exits, evacuation diagrams, main streets, main

tenancies available, and main assembly points available.

Several stakeholders were considered as the target of the information provided by the platform,
such as the workers of the park, the visitors, the authorities, and the civil protection agencies (according
to the current standard and regulations).

The specific theme park under consideration (named “Ecolandia”, located in Reggio Calabria,
Italy) is a complex system to monitor because it includes structures of different nature and scope.
In more detail (see Figure 1), it consists of (1) two different access routes (south and northeast);
(2) several buildings used as offices; (3) one building used as a restaurant; (4) one amphitheater used to
host events and concerts; (5) one historical military fortress, which is surrounded by a moat filled with
water and is used for educational purposes through rooms that contain instruments and expensive
devices; (6) different recreational areas for children; (7) several green areas; and (8) one bicycle path.

It is important to stress that the park lacks a system that is able to manage the crowd, especially
during an emergency, taking into account the high complexity of the park. Furthermore, the park has
been selected by the authorities as gathering point in case of disaster.

Based on the above, the implementation of a decision support tool is needed.
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Figure 1. Satellite image of the theme park. Note the boundaries of the park (dotted line) and the
different areas, i.e., (1) access roads, (2) offices, (3) restaurant, (4) amphitheater, (5) military fortress,
(6) area for children, (7) green areas, and (8) bicycle path.

2.2. Component Description

Figure 2 provides a schematic representation of the main components of the platform. In particular,
each module of the platform consists of one central control unit (herein called HUB) and several local
units (herein called LUMEs). The wireless network of the LUMEs is controlled by the HUB. It is
important to underline that the HUB unit acts like an airplane’s flight recorder, and for this reason it is
located in a safe site. It is able to temporarily store (by means of a solid-state memory) both the data
collected and sent by each LUME and the data collected by its own sensor devices. In fact, the HUB
contains the same sensors as a LUME unit (see Figure 2) and it is equipped with a camera which allows
automatic video streaming in case of emergency. Further details about the single units are provided in
the following.

The number of LUME units is determined on a case-by-case basis by the characteristics of the
structure to monitor. Based on the most relevant areas of the park, we planned to use at least eight
HUBs. To define the strategic points in which they should be installed, the following provisional
locations were taken into consideration: (i) the points where damage or breakdown of the structure is
most likely to occur; (ii) the main escape routes; and (iii) the meeting points.

Each module of the platform is powered through the same power supply system that consists of
(a) one photovoltaic solar panel; (b) one recharging circuit; and (c) one battery.

As shown in Figure 2, each sensor unit contains (a) one dc–dc regulator; (b) one microcontroller
used to manage sensors; and (c) different sensors, e.g., temperature and humidity sensor, air quality
sensor, 3D accelerometer and gyroscope, and a microphone. Note that the schematic of the sensor
units contained in both HUB and LUME is shown in Figure 2. Figure 2a illustrates the HUB (1.1),
the LUMEs (1.2; along the main routes and in the buildings), and the power supply system (2) of the
HUB. This latter consists of a photovoltaic panel (2.1), a recharging circuit (2.2), and a battery (2.3).
The Web server (3) and the power supply system are depicted. Figure 2b refers to the content of each
sensor unit (i.e., HUB and LUMEs), where the dc–dc regulator is included in the HUBs because it is
connected to the power supply system, while the battery powers the LUME.
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Figure 2. Schematic representation of the main parts of the nondestructive test–structural health
monitoring (NDT-SHM) platform: (a) main components of the system; (b) main components of each
sensor unit, based on Micro-Electro-Mechanical Systems (MEMS) sensors.

The motivations behind the choice of each component of the platform are as follows.

1. Power supply system: The theme park has its own photovoltaic system, and having a power
supply system in the platform (to power the HUBs) contributes to obtaining a more sustainable,
efficient, and reliable platform. The power consumption of the platform was estimated by
considering the sampling frequency of the sensors used, the duty cycle of operation of the sensors,
the microcontroller, and the wireless transmitter used. In more detail, each sensor unit needs
about 1 Wh per day (see [18]). This was estimated by considering the following operational
conditions: (i) a sampling frequency of 1 kHz for 3D accelerometers and gyroscopes, 44 kHz
for microphones, and 0.1 kHz for temperature–humidity sensors and air quality sensors; (ii) the
microcontroller works at 1 MHz; and (iii) 1%, 10%, and 10% are the operation duty cycles of
the microcontroller, the sensors, and the transmitter, respectively. In addition, the average solar
radiation on the areas of the theme park is about 5000 Wh/m2/day, and under the hypotheses
of using a photovoltaic (PV) panel with an efficiency of about 14% connected using a cable
with an efficiency of about 85%, a PV panel of at least 10 × 15 cm2 should be used to collect
the energy required to power one sensor unit. The HUB requires an extra amount of energy of
about 4–5 Watts when also equipped with a camera [19]. Furthermore, the power supply system
requires a recharging circuit (consisting of an off-the-shelf electronic board) in order to efficiently
convert the variable voltage obtained from the solar panel (during the operating time) to a fixed
voltage (or fixed current, depending on the type of recharge) for optimal recharge of the battery.
Nevertheless, the recharging circuit is also deputed to the charge control of the batteries to avoid
overcharging and undesirable issues. Finally, the HUBs are powered using a power supply
system that was dimensioned by considering the daily energy consumption of each sensor unit
(i.e., 1 Wh/day); under the hypotheses of using a battery with a maximum depth of discharge of
50% and an efficiency of 80%, and to obtain a system with an autonomy of 15 days, a battery with
a nominal voltage of 12 V and a capacity of 3 Ah was selected from different possibilities. The
LUMEs are powered using button or coin cell batteries, e.g., CR2032.

2. Sensors: (a) The temperature and humidity sensors [20] were included because they allow for
detecting variation in environmental conditions; (b) a Micro-Electro-Mechanical Systems (MEMS)
3D accelerometer [21] was included to monitor seismic waves travelling into the structures
(vibrational signature), which are generated by different sources such as running crowds, vehicles
passing by, or earthquakes; nevertheless, thanks to the DC response accelerometer used, the
inclination can be inferred from the gravity acceleration projections on the three axes by using
proper trigonometric functions; (c) a MEMS 3D gyroscope [21] was included to monitor the
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angular displacements of the structures monitored; (d) two MEMS microphones [22] were
included to monitor the sound waves travelling through the structures (acoustic signature) and
the airborne noise (noise pollution); and (e) air quality sensor units [23,24] were included to
detect the presence of unpleasant gasses and volatile substances (e.g., smoke or particulate
matter) that can be used to identify the occurrence of fire or the exceeding of risk thresholds (air
pollution). Furthermore, the weather conditions are also monitored using, as a support, several
websites which provide weather-related data in different formats (e.g., JSON, HTML, etc.) that are
periodically and automatically downloaded by the platform. These data are used by the platform
to provide additional information related, for example, to wind direction, speed (particularly
useful during a fire or if smoke or unhealthy substances are present in the air), the probability
of occurrence of flash flood, and of high temperatures in summer. Note that the algorithms
we employed implement an innovative method that allows for deriving the structural health
conditions of the structures from their vibro-acoustic response [25,26].

3. Microcontroller: This component is devoted to executing software routines, reading sensors, data
gathering, data transmission, and the management of logical and power states. The operations of
every single HUB and LUME are supervised by a different microcontroller that interacts with the
others in the wireless sensor network (WSN) data exchange. The LUME and the HUB feature a
D51 module (Dynastream Innovations, Cochrane, Alberta, Canada) that includes a nRF51422
chip (Nordic Semiconductor ASA, Oslo, Norway), equipped with a 16 MHz ARM Cortex M0
processor, and a radio that supports 2.4 GHz communication protocol ANT or Bluetooth, which
will be introduced in the next paragraph.

4. Wireless Transmitter: In order to obtain an efficient and reliable monitoring system in terms
of high-speed data transmission, the following points should be carefully analyzed during the
design process [27]: (i) devices with high power transmission and high sensitivity (i.e., high
signal-to-noise ratio, SNR) should be chosen; (ii) the real operating environment should be carefully
analyzed (e.g., considering any obstacles that may affect the transmission distance); (iii) the
frequency of the RF carrier should be taken into account; and (iv) design layout, mechanics,
and coding schemes to the application should be customized case by case [28–32]. Recent
protocols for low-power, long-distance data transmission include i) several low-power wireless
protocols (LPW; see [27]), i.e., ANT, 2.4 and 5 GHz Wi-Fi, ZigBee, Radio Frequency for Consumer
Electronics (RF4CE), Bluetooth low energy, and Bluetooth 5, where ANT is a wireless personal
network protocol; (ii) two low-power wide-area networks (LPWAN; see [33]), i.e., narrow-band
Internet of Things (NB-IoT) and long-range, low-power wireless platform (LoRa). Frequency
band(s), network topology support, data transmission rate, range or transmission capability, and
coexistence must be considered to select the more suitable protocol [27,34], bearing in mind that a
trade-off between power consumption, bandwidth occupation, and range leads to finding the
best solution. Focusing on the transmission capability, in terms of distance D between LUME and
HUB or HUB and server, the limits in Table 1 can be considered for the selection of the protocol
suitable for each application.

Table 1. Transmission capabilities of the protocols suitable for each application.

Protocol Transmission Capability (D)

ANT and Bluetooth low energy <30 m
5 GHz Wi-Fi <50 m

ZigBee and RF4CE <100 m
2.4 GHz Wi-Fi <150 m

Bluetooth 5 <400 m
LoRa <10 km

NB-IoT <20 km
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In more detail, the HUB was designed to be able to provide higher performance in comparison
with the LUME units. This performance especially relates to the transmission of the data gathered
and received from the LUMEs to the Web server. In particular, the HUB is equipped with a Wi-Fi
transmitter (2.4 GHz Wi-Fi) while the LUMEs are equipped with devices with lower transmission
capability (ANT or Bluetooth low energy) than those installed in the HUBs.

The proposed platform uses a Web server to perform data processing in real time with innovative
and customized algorithms. These algorithms were developed to easily detect changes in environmental
(e.g., air pollution level), functional (e.g., inaccessible road), and structural conditions (e.g., structural
failure) for the park. The information extracted during the data processing is then transmitted at high
frequency to the users of the platform by a specially designed dashboard that is accessible from the
Web (i.e., through any PC, smartphone, tablet, etc.). The algorithms employed, their descriptions, and
their functions in the platform are discussed in the following section.

Figure 3 shows the main electrical components and boards of LUMEs and HUBs, which are
contained in a IP65 electrical enclosure for outdoor applications.
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3. Software Platform

3.1. Platform Server Specifications

A well-designed monitoring platform should carefully consider where the data need to be
processed and how the data transmission process can be kept secure. It is preliminarily required to
consider if it is better to process data locally or to store and query the data remotely. Consequently, each
operation should be carefully analyzed, and a trade-off between local and remote operations should
be defined. Possible trade-off solutions include the following: (i) to minimize the amount of data
exchanged on the network (e.g., preferring local data processing or reducing the sampling frequency of
the sensors); (ii) to offload burdensome and important tasks to a more powerful machine (e.g., a remote
server), saving time and energy (otherwise locally required by the sensor units); and (iii) to use custom
developed application programming interfaces (APIs) that allow safe data transmission, especially to
the platform users and all the stakeholders.

For instance, using a cloud server to process the acoustic data collected by the microphones of the
platform, the following benefits can be obtained: (1) the power consumption of the battery-powered
local module is reduced; (2) it is possible to use more powerful computational hardware and
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better-performing software; and (3) each local unit, instead of consuming power in calculations, will
continue running smoothly, staying focused on quickly collecting data. Meanwhile, with the exception
of the occurrence of an alert condition, the environmental data (e.g., the air temperature) are processed
locally with a low frequency, and this will reduce the data flow in the network.

In order to provide more information about the design of the APIs, the terms REST and JSON are
defined. REST stands for representational state transfer [35] and is a widespread style used to design
APIs. REST relies on stateless, client–server, cacheable communications. RESTful services (i.e., the
REST applications; see [35]) use HTTP requests to carry out the four CRUD (create/read/update/delete)
operations, i.e., POST = create, PUT = create and/or update, GET = e.g., make queries, and DELETE
= delete data. JSON stands for JavaScript object notation and is a language-independent format
(lightweight text-based open standard) used for serializing and transmitting structured human-readable
data over a network connection [36], mainly designed for server–Web applications and communications.
Consequently, in this application, the JSON format was used to provide public data using Web services
and APIs.

Finally, specific needs in terms of performance, scalability, administrative features, resources
scaling, costs, migration features, data protection, and data export should be considered to select the
best-fitting server. Bearing in mind all the considerations defined above, a cloud-hosted solution with
proper scaling and migration features at a reasonable cost (guaranteed by the provider) was selected in
this application, fulfilling the project’s requirements.

3.2. Platform Architecture and Tasks

In this section, the architecture (see Figure 4) and the main tasks carried out by the platform are
defined and explained. Each module of the platform (i.e., several LUMEs wirelessly connected to one
HUB) was designed to carry out the following tasks:

1. Recording of the raw data detected by the sensor units of the each LUME in the solid-state
memory of the HUB;

2. Recording, in the solid-state memory of the HUB, of the data detected by the sensor units and the
cameras of the HUB;

3. Sending, wirelessly, in JSON format, the data previously collected in the HUB to the dedicated
Web server;

4. Saving the data sent by the HUB in a specific database of the cloud server (i.e., DB LUMEs+HUB,
where DB stands for database);

5. Storing (in a specific database of the server, i.e., DB MS), the data collected by the current
management system (MS) of the park (e.g., number of visitors in a given area of the park);

6. Storing, in a specific database of the cloud server (i.e., DB Cam), the data collected by the cameras
mounted on the HUB;

7. Storing, in a specific database of the cloud server (i.e., DB PST), the data collected during periodical
simulations and tests (PST). These tests will be carried out, from time to time, to assess the
conditions of each module of the platform and to simulate probable and dangerous events that
might occur in the park (e.g., fire, air pollution, accident along the access roads, passage of heavy
vehicles, flood, induced structural failure);

8. Defining specific sets and sequences of thresholds for each probable and dangerous event using
the data of the DB PST. More details about this task are provided in the following;

9. Processing the data contained in the DB LUMEs+HUB (sensor data), DB Cam (video frames),
and DB MS (miscellaneous data), to extract predefined parameters (e.g., features such as the
mean value or the root-mean-square value, etc.) that represent the information content of the
data stored in the three DBs. More details about this task are provided in the following;

10. Comparing, in real time, the extracted parameters with the thresholds mentioned above (i.e., data
stored in DB PST). This is the core task of the platform. Through this comparison, it is possible
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to understand if the platform is detecting regular conditions (Check = No; see Figure 4) or the
occurrence of one or more emergency events (Check = Yes; see Figure 4), which are selected among
a set of predefined probable events (alert pool). More details about this task are provided in
the following;

11. Providing in real-time, in case of regular conditions (Check = No), the results of the comparison
above to the platform users by means of a specifically designed platform dashboard. Furthermore,
the dashboard provides, in real time, the data collected by each sensor units and by the current
management system;

12. Carrying out in real time, in case of emergency (Check = Yes), the following subtasks:

i. Making a classification of the occurred event(s) as recurrent or complex problem(s), using
a set of alerts that includes six events, i.e., fire, air pollution, route(s) not available, flood,
excessive vibration/noise pollution, and structural failure (see triangles in Figure 4);

ii. Triggering several alerts (set of alerts);
iii. Identifying the most effective solutions (i.e., the ones that minimize the risks) to the

emergency event(s) identified above among a set of predefined (easy) solutions (ES), or
complex solutions (INT+EXT+FAN+GP, see Figure 4), which include the indication of
more appropriate first aid needed (first aid needed, FAN);

iv. Sending one predefined alert message to the platform users, together with the most
effective solution to follow (notification);

v. Alerting the most appropriate first aid (FAN).
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3.2.1. Periodic Simulations

In order to provide more details about the periodic simulations and tests (PST), it is possible
to state that thresholds used during the data processing are defined based on the PST results. PST
are carried out to reproduce conditions related to unusual events. These events can produce light
or heavy effects on the structures and the areas of the park. Light effects (associated with low risks
and easy solutions) are, for example, (1) obstacles or car accidents on the access roads of the park,
(2) high-intensity rain, (3) sudden illness of a visitor to the park, etc. To this end, periodical simulations
are carried out, e.g., by (1) placing cars along the roads, (2) using hydrants, etc. This allows for
evaluating the response time of the platform and of first aid (according to the authorities). Meanwhile,
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high effects (associated with high risks and complex solutions) may be (a) structure failures, (b) fires,
(c) earthquakes, or (d) flash floods. These occurrences are periodically simulated, e.g., by (a) generating
controlled and restorable cracks on the structures (i.e., roads, building, stairs of the amphitheater, walls
of the historical fortress, etc.); (b) lighting a controlled fire; (c) using a tapping machine, a running
crowd, or the passing-by of a heavy vehicle to simulate high-intensity vibrations; (d) pouring large
volumes of water in areas subject to flood, etc. The thresholds related to predefined events (set of alerts;
see Figure 4) and their possible sequences or combinations are determined using the data collected
during the simulations above, the innovative SHM method, and the two approaches (feature-based
and machine-learning-based) illustrated in the following.

3.2.2. Data Analysis

It is important to underline that the above platform is able to apply an innovative SHM
method [18,26,37]. This method aims at identifying and monitoring the structural conditions (e.g.,
occurrence and propagation of structural damage) of an asset through specific analyses of the
vibro-acoustic signature of the monitored asset. In greater detail, the vibro-acoustic signature of a
structure refers to the seismic and acoustic signals that are generated by a source (for example, a car
on a road or a crowd of people on stairs), are transmitted by the structure, and are received by an
accelerometer or a microphone attached to the surface of the structure. The aforementioned method
considers the structure monitored as a filter of mechanical waves and associates the variation over
time of the structure’s ability to filter the waves with the deterioration of the structural health status of
the structure under examination. Figure 5 reports examples of signals recorded using the sensor units
during the in-lab system setup.

To recognize variations in the structural, environmental, and functional conditions of the theme
park, a combination of two different approaches is used by the platform algorithms. The first approach
is a feature-based approach (see feature extraction; Figure 4). Every time a set of data arrives at the
Web server, these data are analyzed in three different domains (i.e., time domain, frequency domain
using fast Fourier transform, and time–frequency domain using the continuous wavelet transform).
This analysis aims at recognizing and extracting a set of meaningful features (i.e., parameters able to
represent the variations of the signals over time). These features were selected during the preliminary
tests that were carried out to set up the algorithms of the platform. In particular, the abovementioned
tests aimed at recreating expected structural and environmental scenarios or events, such as the
generation of cracks in the road pavement due to the repeated passages of vehicles. In more detail, road
pavement with the same characteristics as the access routes of the park was progressively damaged
(i.e., three lines of holes were drilled in the bituminous layers of the road pavement), and a suitable
number of acoustic signals (4000 signals at the sampling frequency of about 1.9 kilo samples/second)
was recorded using one sensor unit during the passage of different vehicles (used as a mechanical
source of noise and vibrations). The acoustic signals represent the acoustic responses (ARs) of the road
pavement to the vehicle loads.

Subsequently, the ARs were analyzed in order to recognize a suitable number of features that
were able to represent the variation in the vibro-acoustic signature of the road [38]. In particular,
the following features were selected for the monitoring of the road pavement structural conditions:
(i) in the time domain, the differences between the amplitudes (herein called ∆a) and the arrival times
(herein called ∆t) of the absolute maxima and minima, and the standard deviation (herein called
σ) of the signals; (ii) in the frequency domain, the absolute maxima of the power spectral density
(herein called PSDmax, see Equation (1)) in the frequency range 20–500 Hz, the spectral centroid (fc;
see Equation (2)) in the frequency range 20–500 Hz, and the slope (herein called Slope) of the linear
regression of the spectrum in the frequency range 20–500 Hz; (iii) in the time–frequency domain,
the entropy (herein called EntCWC) and the maximum energy (herein called EngCWC) of the of the
Continuous Wavelet Coefficients (CWCs) calculated using Equations (3)–(6) and the pseudo-frequency
(herein called p-fWR) associated with the highest values of the CWCs (the wavelet ridge) derived from
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the scalograms (i.e., graphs that show, in the time–frequency domain, the variation in the CWCs’
amplitudes with a color scale that ranges from 0 to 64).Electronics 2019, 8, x FOR PEER REVIEW 11 of 23 
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Equation (1) was used to derive the power spectrum density (PSD versus frequency) [39]:

PSD = 2·
|FFT|2

N·Fs
(1)

where FFT stands for fast Fourier transform, N is the signal’s length (samples), and Fs represents the
sampling frequency used to collect the signals (samples per second). Based on the literature, the PSD
was expressed in decibel watts per Hz (dBW/Hz).
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The spectral centroid (fc) represents the “center of mass” of the power spectrum and was
determined using the following formula [40]:

fc =

N−1∑
n=0

pn· fn

N−1∑
n=0

pn

(2)

where fc is the spectral centroid (Hz), N is the sample length of the acoustic signal; pn represents the
weights (dBW/Hz), i.e., the values on the y axis of the spectrum; and fn is the frequencies (Hz) on the x
axis of the spectrum.

The continuous wavelet transform (CWT), which was used to calculate the CWCs, was applied
using the following expression [41]:

CWT(a, b) =

+∞∫
−∞

x(t)·ψ∗a,b(t)dt, (3)

where a is the scaling parameter and is a vector of positive elements which allows for dilating or
contracting the basic function or mother wavelet ψ (cf. [42,43]); b is the shifting parameter, which
permits the translation of the Mother Wavelet (MW) ψ along the x axis (time); x(t) is the signal to be
transformed; t stands for time; and ψ* is the complex conjugate of the MW function ψ chosen.

Equation (4) was used to derive the Shannon’s entropy of the CWCs (herein called EntCWC; [43]),
which represents the degradation of the mean of transmission (i.e., the road pavement) of the
vibro-acoustic signals due to the presence of the induced damage (i.e., the drilled holes). For each scale
factor a, the value EntCWC was calculated using the following expression [43]:

EntCWC(a) = −
N∑

i=1

pi·log2pi, (4)

where N is the length of each signal and pi is the energy probability distribution of the continuous
wavelet coefficients (CWCs), for i = 1, 2, . . . , N, which can be calculated through the expression [43]

pi =

∣∣∣CWC(a, i)
∣∣∣2

Eng(a)
, (5)

where EngCWC(a) represents the energy content of the CWCs for each scale factor a. In more detail [43],
the variable EngCWC(a) can be calculated from the matrix CWCs, for b = 1, 2, . . . , N (with N equal to
the length of each signal), using the following expression:

EngCWC(a) =
∑

b

∣∣∣CWC(a, b)
∣∣∣2. (6)

In order to show some examples of how the features extracted represent the variation of the
structural health status of the road pavement, the following figures are presented. In particular, Figure 4
shows the average scalograms related to the conditions SHS0 (i.e., road pavement without holes) and
SHS3 (i.e., road pavements cracked using three lines of 46 holes). The scalograms were calculated
using the MW called “morl”.

Based on Figures 6 and 7, it is possible to state that the variation in the condition of the pavements
of the park’s access routes can be recognized and monitored using graphical (i.e., scalograms) or
numerical (i.e., features) results extracted from the ARs of the road pavement. Meanwhile, Table 2
shows the values of the nine features extracted from the ARs of the road pavement in each of the four
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conditions considered in the abovementioned tests (i.e., SHS0 = uncracked road; SHS1 = road with a
line of 16 holes, SHS2 = road with an additional line of 15 holes; SHS3 = road with a last additional line
of 15 holes).
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Figure 6. Scalograms, obtained using the Mother Wavelet (MW) “morl”, used to recognize the variation
of the Structural Health Status from (a) SHS0 to (b) SHS3 in the road pavement under test and to define
useful features for the time–frequency domain of analysis.

Table 2. Averages of the features extracted, their overall variations, the parameters of the linear
regression model applied on the average values, and R-square values.

SHS#
Features

∆a ∆t σ PSDmax Slope fc EntCWC p-fWR EngCWC

0 1.00 1.00 1.00 1.00 1.00 1.000 1.000 1.00 1.00
1 0.94 0.95 0.93 1.05 0.99 1.001 0.999 0.98 0.95
2 0.97 0.85 0.97 0.95 0.93 1.005 0.999 0.98 0.88
3 0.86 1.18 0.84 1.12 0.90 1.007 0.996 0.96 0.83

Overall variation −13.9% 17.9% −15.8% 12.3% −9.7% 0.7% −0.4% −3.7% −16.8%
m −0.04 0.04 −0.04 0.03 −0.03 0.002 −0.001 −0.01 −0.06
q 1.04 0.88 1.05 0.96 1.04 0.997 1.001 1.01 1.06

R2 0.70 0.17 0.70 0.24 0.94 0.96 0.84 0.90 0.99

Symbols. SHS# = structural health status of the road pavement as a function of the drilled holes used to simulate
cracks; Overall variation = calculated using the expression −1 + (featureSHS0 − featureSHS3); m = angular coefficient
of the linear regression model; q = intercept of the linear regression; R2 = coefficient of determination.
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Figure 7. Linear regressions of the normalized average values of the nine features (∆a = differences
between signal amplitudes; ∆t = differences between signal arrival times; σ = signal standard deviations;
PSDmax = absolute maxima of the power spectral densities; Slope = slope of the linear regressions of
the spectra range 20–500 Hz; fc = spectral centroids in the range 20–500 Hz; EntCWC = entropies of the
Continuous Wavelet Coefficients, CWCs; EngCWC = maximum energies of the CWCs) extracted from
the acoustic responses of the road pavement.

Subsequently, the meaningful information (scalograms, power spectra, and features) obtained
using the first approach was used as input for the second data analysis approach, i.e., the machine-
learning-based approach (see the “Check” stage; Figure 4). In more detail, different Convolutional
Neural Networks (CNNs) were designed. CNNs are commonly used for the classification of images
(see, e.g., [16]), but in this application they were used to (i) take as an input the feature sets extracted;
(ii) compare the features extracted with the related thresholds; and (iii) recognize the occurrence of one
or more emergency event(s). A large amount of available data ensured the robustness of the CNN.
In fact, the CNN was trained continuously during the platform lifetime, using the features extracted
from the data contained in different DBs (especially those from DB PST). Importantly, the platform
becomes able, in a short time, to forecast forthcoming functional damage and failures, and this allows
for carrying out predictive maintenance of the structures in the theme park.

As an example, one of the CNNs mentioned above is presented in this paper (see Figure 8).
This CNN was specifically designed to classify the features extracted from the acoustic signals gathered
from the road pavement and to recognize variation in the structural health status of the road [44].

Electronics 2019, 8, x FOR PEER REVIEW 15 of 23 

Electronics 2019, 8, x FOR PEER REVIEW 15 of 23 

(see, e.g., [16]), but in this application they were used to (i) take as an input the feature sets extracted; 

(ii) compare the features extracted with the related thresholds; and (iii) recognize the occurrence of 

one or more emergency event(s). A large amount of available data ensured the robustness of the 

CNN. In fact, the CNN was trained continuously during the platform lifetime, using the features 

extracted from the data contained in different DBs (especially those from DB PST). Importantly, the 

platform becomes able, in a short time, to forecast forthcoming functional damage and failures, and 

this allows for carrying out predictive maintenance of the structures in the theme park. 

As an example, one of the CNNs mentioned above is presented in this paper (see Figure 8). This 

CNN was specifically designed to classify the features extracted from the acoustic signals gathered 

from the road pavement and to recognize variation in the structural health status of the road [44]. 

 

Figure 8. Schematic representation of the convolutional neural network implemented in the platform. 

The abovementioned CNN was built while paying attention to the recommendations and the 

recurrent problems described in the literature [45,46], and it has the following characteristics: (1) two 

fully connected layers (with 70 and 30 hidden nodes, respectively), which carry out pattern 

recognition using the activation function ReLu (relu(x) := max(0, x), i.e., this function, f (z), is zero 

when z < 0, and it is equal to z when z ≅ 0); (2) one convolutional layer, which automatically extracts 

additional features from the input); (3) one pooling layer, which carries out the average pooling of 

the features extracted while applying the valid padding; (4) Adadelta Optimized was selected as the 

optimizer function (for the adjustment of weights and biases); (5) the activation function Softmax 

cross entropy measures the probability error in discrete classification tasks, and confusion matrices 

were used to show and analyze the results of the classification. In particular, to quantify the results, 

the model accuracy was used. This parameter can be derived by calculating the ratio between the 

number of signals of the testing data set correctly classified and the total number of signals belonging 

to the testing data set to be classified. 

Finally, Figure 9a shows the convergence of the CNN, which was obtained after 50 epochs using 

as inputs (i) 60% of the data set (4000 features) for the training; (ii) 40% of the features for the testing; 

(iii) a learning rate equal to 5; (iv) a convolutional layer with 20 filters (length of the convolution 

window = 5; stride length of the convolution = 5, where the stride is the amount by which the filter 

shifts); (v) a pooling layer with a window size equal to 1; and (vi) a pool stride equal to 1. Finally, the 

model’s accuracy (99.6%) was derived from the confusion matrix reported in Figure 9b. 

Figure 8. Schematic representation of the convolutional neural network implemented in the platform.



Electronics 2019, 8, 1180 15 of 22

The abovementioned CNN was built while paying attention to the recommendations and the
recurrent problems described in the literature [45,46], and it has the following characteristics: (1) two
fully connected layers (with 70 and 30 hidden nodes, respectively), which carry out pattern recognition
using the activation function ReLu (relu(x): = max(0, x), i.e., this function, f (z), is zero when z < 0, and it
is equal to z when z � 0); (2) one convolutional layer, which automatically extracts additional features
from the input); (3) one pooling layer, which carries out the average pooling of the features extracted
while applying the valid padding; (4) Adadelta Optimized was selected as the optimizer function (for
the adjustment of weights and biases); (5) the activation function Softmax cross entropy measures the
probability error in discrete classification tasks, and confusion matrices were used to show and analyze
the results of the classification. In particular, to quantify the results, the model accuracy was used. This
parameter can be derived by calculating the ratio between the number of signals of the testing data set
correctly classified and the total number of signals belonging to the testing data set to be classified.

Finally, Figure 9a shows the convergence of the CNN, which was obtained after 50 epochs using
as inputs (i) 60% of the data set (4000 features) for the training; (ii) 40% of the features for the testing;
(iii) a learning rate equal to 5; (iv) a convolutional layer with 20 filters (length of the convolution
window = 5; stride length of the convolution = 5, where the stride is the amount by which the filter
shifts); (v) a pooling layer with a window size equal to 1; and (vi) a pool stride equal to 1. Finally,
the model’s accuracy (99.6%) was derived from the confusion matrix reported in Figure 9b.Electronics 2019, 8, x FOR PEER REVIEW 16 of 23 
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It is important to note that, based on the experimental results related to the CNN application,
although some features showed overall variation (e.g., fc; cf. Table 2) of less than 1%, their use was
crucial for the convergence of the CNN used.

3.2.3. Easy and Complex Solutions

By referring to the identification of the most effective solution (Task 12, Point iii), it should be
noted that two different classes of emergency are considered, i.e., recurrent problems and complex
problems. To face recurring problems, the platform is able to propose Easy Solutions (ES). Possible
examples could be, e.g., to reduce the sound level during a concert, or to call a tow truck in case of an
accident, or an ambulance in case of an ill person. In this case, the cameras placed on the closest HUB
(with respect to the place where the problem occurred) can be turned on to monitor the area through
video streaming to be saved on the server. Differently from the case above, to face complex problems
(e.g., earthquake or fire), proper emergency management strategies (e.g., a combination of more than
one easy solution) are defined by the platform. In this case, the camera placed on the closest HUB
automatically turns on to make the identification of the best complex solution easier, and the video is
automatically saved on the related DB.



Electronics 2019, 8, 1180 16 of 22

Complex solutions involve the definition of an escape plan that consists of (1) the identification of
the internal evacuation paths in a given building (INT; see Figure 4), the external evacuation paths in a
given open space (EXT; see Figure 4), the escape route to follow to reach a given meeting point (GP; see
Figure 4), and identification of the first aid needed (FAN; see Figure 4).

Finally, in case of emergency (recurrent or complex), the platform is designed to (i) trigger the
proper alert that can be seen on the dashboard of the platform (see Figure 10) and which is diffused,
using loudspeakers, through prerecorded sounds and messages that indicate the safe escape routes to
follow (INT+EXT), the meeting point to reach (GP), and the arrival time of the authorities for the first
aid (FAN); (ii) identify the most effective solutions among a set of predefined easy solutions (ES) or
complex solutions (INT+EXT+FAN+GP); and (iii) send predefined alert message to the platform users
and to the first aid responders (FAN).

Electronics 2019, 8, x FOR PEER REVIEW 17 of 23 

Electronics 2019, 8, x FOR PEER REVIEW 17 of 23 

3.2.4. Dashboard of the Platform 

The dashboard of the platform was designed using open-source IoT platforms. Figure 10 shows 

three screenshots of the platform’s dashboard. 

 

Figure 10. Screenshots of the three main levels of the platform: (a) highest level: list and localization 

of all the platform’s modules, which are represented by the HUBs; (b) medium level: list and 

localization of the nine LUMEs of Module 1; (c) lowest level: position and graphs of one of the LUMEs 

(LUME 1_H) included in Module 1, the predefined exits, and the predefined Gathering Point (GP). 

Figure 10 shows the three main levels of the platform’s dashboard: 

Figure 10. Screenshots of the three main levels of the platform: (a) highest level: list and localization of
all the platform’s modules, which are represented by the HUBs; (b) medium level: list and localization
of the nine LUMEs of Module 1; (c) lowest level: position and graphs of one of the LUMEs (LUME
1_H) included in Module 1, the predefined exits, and the predefined Gathering Point (GP).
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We note that the safe escape routes for the people involved in an emergency and the access routes
for first aid were determined by applying a properly designed graph-based algorithm. Multiple paths
among the vertices of the graph (i.e., the crossroads present on the park) were predefined. The platform
is able to find the shortest path between the vertex closest to the emergency and the most accessible,
closest, and safest assembly point still available.

3.2.4. Dashboard of the Platform

The dashboard of the platform was designed using open-source IoT platforms. Figure 10 shows
three screenshots of the platform’s dashboard.

Figure 10 shows the three main levels of the platform’s dashboard:

1. The highest level, which consist of a single screen where it is possible to see a widget list
that reports all the platform’s modules, which are represented by the HUBs (localized by the
geographic coordinates, i.e., latitude and longitude; cf. Figure 10a), and a widget alarm that
shows the park’s conditions;

2. The medium level, which consists of different screens (i.e., eight in this platform) where it is
possible to see a widget list that shows the components of each module (e.g., Module 1 = HUB
1 + 9 LUMEs; cf. Figure 10b), the widget map that shows their localizations (see latitude and
longitude in Figure 10b), and the widget alarm that shows the park’s conditions;

3. The lowest level, where one screen is available for each sensor unit (i.e., all the HUBs and all the
LUMEs of the platform), which includes (i) the widget map that shows where they are installed,
the predefined exits (i.e., Exit 1, Exit 2, and Exit 3 in Figure 10c), and the predefined Gathering
Point (GP in Figure 10c); (ii) the graphs related to one sensor unit (e.g., LUME 1_H in Figure 10c);
and (iii) the widget alarm that shows the park’s conditions.

Note that the alarms can be seen at each platform level (highest, medium, and lowest).
It should be noted that the graphs included in each low level of the platform’s dashboard were

plotted based on the following considerations: (i) the graph “Noise Level” (see Figure 10c) refers to the
microphone that measures the noise pollution, and it shows the noise level (dBA) over time considering
as upper threshold the value 170 dBA, which refers to the noise produced by, e.g., a shotgun [47,48];
(ii) air humidity ranges from 0% to 100%; (iii) air temperature is supposed to range from −3 ◦C to
60 ◦C, based on the variation of the temperature of the air and structures in the park during the year;
(iv) the upper threshold of the vibration level was considered equal to 0.2 m/s2, which is the value of
vibration at which people lose their balance [49]; (v) the inclinometer measures the inclination of the
sensor unit, which depends on the inclination of the monitored structure (e.g., 90◦ can represent a wall;
see Figure 10c); (vi) the air quality is expressed in terms of the Air Quality Index (AQI; dimensionless;
cf. [50,51]) and the upper threshold was defined by considering that AQI = 150 refers to unhealthy air
conditions [51].

Seeking to show the potentialities and the operation of the platform, two sequences of events are
reported below. In particular, a fire and the presence of an obstacle on one of the access routes of the
park were considered.

The first example (see Figure 11) refers to a fire on the amphitheater’s stage during a show in
front of an audience sitting in the stands. It is expected that the simulated emergency (fire) is followed
by the following sequence of events:

1. Temperature increase, humidity decrease, and worsening of the air quality are detected by the
LUMEs closer to the fire (Figure 11b);

2. The camera of the HUB turns on;
3. The platform triggers the alarm (Figure 11b);
4. The noise level and the vibration level increase because of the fleeing crowd that is leaving

the amphitheater;
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5. The platform makes an estimation of the number of people potentially involved (e.g. based on
the tickets sold);

6. The platform controls the remaining areas of the park and selects the quickest and safest path
for the crowd (see Exit 2 in Figure 11b) and the closest available assembly point (see GP 1 in
Figure 11b);

7. The platform sends a message to the first aid responders (e.g., firefighters and an ambulance)
indicating the access route to be followed, the estimated number of people involved, and the
point at which the emergency occurred;

8. The platform sends a prerecorded message to the audience using a loudspeaker that indicates the
escape directions, the primary and the alternative exits, the assembly point to be reached where
first aid will be available, and the estimated arrival time of the first aid.

9. The platform performs a self-diagnostic on the sensor units involved in the emergency.
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The second example refers to the presence of an obstacle on one of the access routes of the park.
In more detail, a street lamp fallen on one of the access routes of the park was considered as a possible
obstacle. The following sequence of events is expected:

1. The inclinometer installed on the fallen street lamp detects an unexpected rotation;
2. A sudden and uncommon noise and a peak of vibration are detected by the LUMEs closer to the

access route (placed along the road and on the street lamps);
3. The camera of the HUB turns on;
4. The platform triggers the alarm;
5. The platform makes an estimation of the number of people potentially involved (e.g., the average

number of vehicles that travel the route every day);
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6. The platform controls the remaining areas of the park and the availability of the second of the
two access routes using the sensor units and the related cameras on the HUB.

7. The platform sends a message to the first aid responders (e.g., tow truck and the municipality)
indicating the access route to be followed, the estimated number of people present in the park,
and the point at which the emergency occurred;

8. The platform sends a prerecorded message to the audience using a loudspeaker that indicates the
alternative exits and the estimated arrival time of the first aid.

9. The platform performs a self-diagnostic on the sensor units involved in the emergency.

It is important to underline that the two examples above refer to usual (obstacle) and unusual
(fire) emergencies, and that in the case of alerts related to the structural conditions of the monitored
structures and infrastructures or to the functioning of the sensor units, the platform, instead of alerting
first aid providers, will alert the stuff of the park responsible for maintenance.

4. Conclusions

Interactions among catastrophic, accidental, and natural events and deficiencies in management
increasingly affect structures and infrastructures. These interactions cause emergencies and complex
problems that are difficult to solve, especially in real time and when highly populated areas are involved.

Possible solutions include the meticulous care of asset design and complex monitoring
technologies (e.g., sensor-based platforms). This study is focused on the most recent, sustainable, and
efficient methods employing nondestructive, test-based monitoring methods and devices, wavelet-
and machine-learning-based data processing, low-power and ultra-low-power sensors, and data
transmission protocols.

Prompt or early identification of potential failures in cement concrete and asphalt concrete assets
allows for optimizing the management process and facilitating the solution of usual and unusual
problems. Despite the high number of solutions proposed in recent years, none of these has a sufficient
level of development that allows for performing, at the same time, complete and comprehensive
structural health monitoring (i.e., failure detection, localization, qualification, and quantification in
different materials). For these reasons, a modular and scalable monitoring platform was presented
in this study. It was designed for an Italian thematic park (located in Reggio Calabria, Italy) in the
framework of the Italian research project SICURVIA.

The presented platform consists of several modules, and each module includes a central
sensor/control unit (HUB) and a network of local sensor units (LUME). The data collected by the
sensors (temperature and humidity sensors, inclinometer, microphone, accelerometer, etc.) of the
HUB and the LUMEs are transmitted wirelessly, in JSON format, to a Web server that performs the
data processing. The platform is innovative because of the use of algorithms based on the concept of
the vibro-acoustic signature of the asset monitored. This signature is gathered by microphones and
accelerometers (contained in the sensor units) and is analyzed using wavelet-based and CNN-based
algorithms specifically designed to extract crucial information about the structural and environmental
conditions of the areas of the thematic park.

Simulations showed that the platform has the potential to (i) solve the drawbacks of the current
monitoring systems; (ii) increase the efficiency and the sustainability of the management process of
different assets; and (iii) improve the safety of public areas by providing real-time decision support for
the prompt and correct application of emergency plans and evacuation procedures and rapid first aid.

Finally, the limitations of the proposed solution mainly include (i) the management of the large
amount of data gathered by the system; (ii) the need for periodic simulations and tests to update
thresholds and to add possible unexpected scenarios; and (iii) the need to develop specific protocols
that are able to safely and easily connect the system and the park with other systems in the framework
of the smart city and the IoT world.
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