Cultivar Discrimination of Single Alfalfa (Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Sample
2.2. Multispectral Imaging System
2.3. Multispectral Image Analysis
2.4. Multivariate Data Analysis
2.4.1. PCA
2.4.2. LDA
2.4.3. SVM
3. Results
3.1. Morphologic Features of Medicago sativa L. Cultivars Seeds
3.2. Spectroscopic Analysis
3.3. Discrimination Models for Seed Classification
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Z.G.; Liu, H.X.; Wang, S.M.; Tian, F.P.; Cheng, G.D. Biomass, persistence and drought resistance of nine lucerne varieties in the dry environment of west China. Aust. J. Exp. Agric. 2005, 45, 59–64. [Google Scholar] [CrossRef]
- Luo, D.; Liu, W.X.; Wang, Y.R.; Zhang, J.Y.; Liu, Z.P. Development of a rapid one-step PCR protocol to distinguish between alfalfa (Medicago sativa) and sweet clover (Melilotus spp.) seed. Seed Sci. Technol. 2014, 42, 237–246. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, S.; Moreira, M.T.; Feijoo, G. Environmental performance of lignocellulosic bioethanol production from alfalfa stems. Biofuels Bioprod. Biorefin. 2010, 4, 118–131. [Google Scholar] [CrossRef]
- Dien, B.S.; Miller, D.J.; Hector, R.E.; Dixon, R.A.; Chen, F.; McCaslin, M.; Reisen, P.; Sarath, G.; Cotta, M.A. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour. Technol. 2011, 102, 6479–6486. [Google Scholar] [CrossRef] [PubMed]
- Min, X.Y.; Liu, W.X.; Zhang, Z.S.; Wei, X.Y.; Qi, X.; Zhang, Y.; Liu, Z.P.; Wang, Y.R. Construction of SSR marker fingerprint database of standard alfalfa carieties utilizing DUS tests. Acta Prataculturae Sin. 2017, 26, 47–56. [Google Scholar]
- Wang, J.P.; Gogan, O.I.; Forster, J.W. Prospects for applications of genomic tools in registration testing and seed certification of ryegrass varieties. Plant Breed. 2016, 135, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Owen, H.; Pearson, K.; Roberts, A.M.I.; Reid, A.; Russell, J. Single nucleotide polymorphism assay to distinguish barley (Hordeum vulgare L.) varieties in support of seed certification. Genet. Resour. Crop. Evol. 2019, 66, 1243–1256. [Google Scholar] [CrossRef]
- Saccomanno, B.; Wallace, M.; O’Sullivan, D.M.; Cockram, J. Use of genetic markers for the detection of off-types for DUS phenotypic traits in the inbreeding crop, barley. Mol. Breed. 2020, 40, 13. [Google Scholar] [CrossRef] [Green Version]
- Boelt, B.; Shrestha, S.; Salimi, Z.; Jørgensen, J.R.; Nicolaisen, M.; Carstensen, J.M. Multispectral imaging—A new tool in seed quality assessment? Seed Sci. Res. 2018, 28, 222–228. [Google Scholar] [CrossRef]
- Hu, X.W.; Yang, L.J.; Zhang, Z.X. Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods 2020, 16, 116. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Lu, X.; Chen, W.; Yang, J.; Zheng, L. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods. Food Chem. 2014, 153, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Ma, F.; Lu, X.; Yang, J.; Zheng, L. Online variety discrimination of rice seeds using multispectral imaging and chemometric methods. J. Appl. Spectrosc. 2016, 82, 993–999. [Google Scholar] [CrossRef]
- Sendin, K.; Manley, M.; Williams, P.J. Classification of white maize defects with multispectral imaging. Food Chem. 2018, 243, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Salimi, Z.; Boelt, B. Classification of Processing Damage in Sugar Beet (Beta vulgaris) Seeds by Multispectral Image Analysis. Sensors 2019, 19, 2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, B.; Roger, T.; Vorhagen, F.V. Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Trans. Graph. 1997, 16, 109–154. [Google Scholar] [CrossRef]
- Gonnet, J.F. Colour effects of co-pigmentation of anthocyanin revisited—3. A further description using CIELAB differences and assessment of matched colours using the CMC model. Food Chem. 2001, 75, 473–485. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 2011, 44, 2624–2633. [Google Scholar] [CrossRef]
- ElMasry, G.; Mandour, N.; Wagner, M.H.; Demilly, D.; Verdier, J.; Belin, E.; Rousseau, D. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 2019, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- EIMasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support vector network. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Devos, O.; Ruckebusch, C.; Durand, A.; Duponchel, L.; Huvenne, J.P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst. 2009, 96, 27–33. [Google Scholar] [CrossRef]
- Xie, L.; Ying, Y.; Ying, T. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics. J. Food Eng. 2009, 94, 34–39. [Google Scholar] [CrossRef]
- Luo, L.Q.; Yao, X.L.; He, S.L. Study on the method of determining the survival of rice seeds based on visible-near infrared multispectral data. Spectrosc. Spectr. Anal. 2020, 40, 221–226. [Google Scholar]
- Bao, Y.D.; Mi, C.X.; Wu, N.; Liu, F.; He, Y. Rapid Classification of wheat grain varieties using hyperspectral imaging and chemometrics. Appl. Sci. 2019, 9, 4119. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dai, L.M.; Cheng, F. Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network. J. Food Meas. Charact. 2020, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, F.; He, Y.; Li, X.L. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of Maize seeds. Sensors 2012, 12, 17234–17246. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Lu, X.; Chen, W.; Chen, F.; Yang, J.; Zheng, L. Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods. J. Agric. Sci. 2016, 154, 1–12. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, H. A least-squares support vector machine (LS-SVM) based on fractal analysis and CIELab parameters for the detection of browning degree on mango (Mangifera indica L.). Comput. Electron. Agric. 2012, 83, 79. [Google Scholar] [CrossRef]
Number | Latin Name | Origin | Cultivar |
---|---|---|---|
1 | Medicago sativa L. | United States | Abi700 |
2 | Medicago sativa L. | United States | Boja |
3 | Medicago sativa L. | United States | Maverick |
4 | Medicago sativa L. | United States | Ranger |
5 | Medicago sativa L. | United States | Sutter |
6 | Medicago sativa L. | United States | uc-1465 |
7 | Medicago sativa L. | France | Fado |
8 | Medicago sativa L. | United States | Vernal |
9 | Medicago sativa L. | China | Zhongmu1 |
10 | Medicago sativa L. | China | Zhongmu3 |
11 | Medicago sativa L. | China | Dongmu1 |
12 | Medicago sativa L. | China | Zhonglan2 |
Predict | Actual | Total (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abi700 | Boja | Maverick | Ranger | Sutter | uc-1465 | Fado | Vernal | Zhongmu1 | Zhongmu3 | Dongmu1 | Zhonglan2 | |||
Training | Abi700 | 83 | 22 | 23 | 13 | 1 | 14 | 0 | 2 | 0 | 2 | 10 | 4 | |
(n = 140) | Boja | 22 | 55 | 26 | 18 | 1 | 4 | 0 | 0 | 3 | 2 | 9 | 8 | |
Maverick | 8 | 25 | 48 | 19 | 2 | 5 | 0 | 3 | 3 | 2 | 7 | 4 | ||
Ranger | 6 | 17 | 14 | 25 | 4 | 8 | 0 | 6 | 3 | 8 | 10 | 5 | ||
Sutter | 2 | 0 | 1 | 6 | 54 | 7 | 0 | 5 | 20 | 19 | 12 | 11 | ||
uc-1465 | 10 | 3 | 6 | 12 | 11 | 79 | 0 | 5 | 11 | 16 | 19 | 4 | ||
Fado | 0 | 0 | 0 | 0 | 0 | 0 | 140 | 0 | 1 | 0 | 0 | 1 | ||
Vernal | 3 | 5 | 7 | 12 | 10 | 5 | 0 | 93 | 26 | 21 | 2 | 2 | ||
Zhongmu1 | 1 | 0 | 1 | 5 | 19 | 3 | 0 | 16 | 50 | 29 | 7 | 4 | ||
Zhongmu3 | 0 | 3 | 3 | 8 | 9 | 7 | 0 | 4 | 9 | 25 | 2 | 2 | ||
Dongmu1 | 4 | 5 | 5 | 12 | 11 | 6 | 0 | 0 | 4 | 5 | 42 | 17 | ||
Zhonglan2 | 1 | 5 | 6 | 10 | 18 | 2 | 0 | 6 | 10 | 11 | 20 | 78 | ||
Accuracy (%) | 59.29 | 39.29 | 34.29 | 17.86 | 38.57 | 56.43 | 100.00 | 66.43 | 35.71 | 17.86 | 30.00 | 55.71 | 45.95 | |
Testing | Abi700 | 30 | 11 | 9 | 5 | 0 | 7 | 0 | 0 | 0 | 0 | 6 | 1 | |
(n = 60) | Boja | 13 | 24 | 12 | 5 | 1 | 1 | 0 | 1 | 1 | 0 | 3 | 3 | |
Maverick | 1 | 9 | 21 | 10 | 0 | 1 | 0 | 4 | 1 | 0 | 4 | 1 | ||
Ranger | 4 | 5 | 8 | 17 | 2 | 4 | 0 | 1 | 1 | 2 | 3 | 0 | ||
Sutter | 2 | 0 | 0 | 2 | 17 | 2 | 0 | 2 | 7 | 13 | 3 | 3 | ||
uc-1465 | 6 | 2 | 0 | 2 | 3 | 36 | 0 | 2 | 3 | 4 | 6 | 1 | ||
Fado | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 0 | 2 | 0 | 0 | 0 | ||
Vernal | 1 | 4 | 5 | 4 | 6 | 1 | 0 | 38 | 6 | 12 | 1 | 0 | ||
Zhongmu1 | 0 | 0 | 0 | 3 | 9 | 0 | 1 | 6 | 25 | 13 | 3 | 4 | ||
Zhongmu3 | 0 | 0 | 0 | 3 | 6 | 4 | 0 | 5 | 5 | 7 | 2 | 1 | ||
Dongmu1 | 2 | 1 | 2 | 5 | 6 | 1 | 0 | 0 | 2 | 3 | 14 | 9 | ||
Zhonglan2 | 1 | 4 | 3 | 4 | 10 | 3 | 0 | 1 | 7 | 6 | 15 | 37 | ||
Accuracy (%) | 50.00 | 40.00 | 35.00 | 28.33 | 28.33 | 60.00 | 98.33 | 63.33 | 41.67 | 11.67 | 23.33 | 61.67 | 45.14 |
Predict | Actual | Total (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abi700 | Boja | Maverick | Ranger | Sutter | uc-1465 | Fado | Vernal | Zhongmu1 | Zhongmu3 | Dongmu1 | Zhonglan2 | |||
Training | Abi700 | 122 | 5 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(n = 140) | Boja | 5 | 113 | 0 | 19 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | |
Maverick | 0 | 1 | 119 | 1 | 4 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Ranger | 13 | 21 | 0 | 102 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Sutter | 0 | 0 | 7 | 0 | 133 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ||
uc-1465 | 0 | 0 | 14 | 0 | 2 | 118 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Fado | 0 | 0 | 0 | 0 | 0 | 0 | 140 | 0 | 0 | 0 | 0 | 0 | ||
Vernal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 132 | 3 | 2 | 0 | 0 | ||
Zhongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 123 | 1 | 11 | 0 | ||
Zhongmu3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 136 | 4 | 0 | ||
Dongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14 | 1 | 125 | 0 | ||
Zhonglan2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 140 | ||
Accuracy (%) | 87.14 | 80.71 | 85.00 | 72.86 | 95.00 | 84.29 | 100.00 | 94.29 | 87.86 | 97.14 | 89.29 | 100.00 | 89.46 | |
Testing | Abi700 | 48 | 2 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(n = 60) | Boja | 3 | 51 | 0 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
Maverick | 0 | 0 | 52 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Ranger | 8 | 7 | 0 | 42 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | ||
Sutter | 0 | 0 | 1 | 0 | 59 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ||
uc-1465 | 1 | 0 | 7 | 0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Fado | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | ||
Vernal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 4 | 0 | 0 | 0 | ||
Zhongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 45 | 2 | 7 | 0 | ||
Zhongmu3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 57 | 2 | 0 | ||
Dongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 1 | 51 | 1 | ||
Zhonglan2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | ||
Accuracy (%) | 80.00 | 85.00 | 86.67 | 70.00 | 98.33 | 85.00 | 100.00 | 95.00 | 75.00 | 95.00 | 85.00 | 98.33 | 87.78 |
Predict | Actual | Total (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abi700 | Boja | Maverick | Ranger | Sutter | uc-1465 | Fado | Vernal | Zhongmu1 | Zhongmu3 | Dongmu1 | Zhonglan2 | |||
Training | Abi700 | 127 | 4 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(n = 140) | Boja | 3 | 131 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Maverick | 0 | 0 | 135 | 1 | 1 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Ranger | 10 | 5 | 1 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Sutter | 0 | 0 | 0 | 0 | 139 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
uc-1465 | 0 | 0 | 3 | 0 | 0 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Fado | 0 | 0 | 0 | 0 | 0 | 0 | 140 | 0 | 0 | 0 | 0 | 0 | ||
Vernal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 140 | 0 | 1 | 0 | 0 | ||
Zhongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 129 | 0 | 9 | 0 | ||
Zhongmu3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 136 | 3 | 0 | ||
Dongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 128 | 0 | ||
Zhonglan2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 140 | ||
Accuracy (%) | 90.71 | 93.57 | 96.43 | 93.57 | 99.29 | 93.57 | 100.00 | 100.00 | 92.14 | 97.14 | 91.43 | 100.00 | 95.65 | |
Testing | Abi700 | 53 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(n = 60) | Boja | 2 | 55 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
Maverick | 0 | 0 | 55 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Ranger | 5 | 2 | 1 | 54 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Sutter | 0 | 0 | 2 | 0 | 59 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
uc-1465 | 0 | 1 | 2 | 0 | 0 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Fado | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | ||
Vernal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 1 | 0 | ||
Zhongmu1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 55 | 0 | 4 | 1 | ||
Zhongmu3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 1 | 0 | ||
Dongmu1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 54 | 0 | ||
Zhonglan2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | ||
Accuracy (%) | 88.33 | 91.67 | 91.67 | 90.00 | 98.33 | 81.67 | 100.00 | 100.00 | 91.67 | 100.00 | 90.00 | 98.33 | 93.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, Z.; Hu, X. Cultivar Discrimination of Single Alfalfa (Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis. Sensors 2020, 20, 6575. https://doi.org/10.3390/s20226575
Yang L, Zhang Z, Hu X. Cultivar Discrimination of Single Alfalfa (Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis. Sensors. 2020; 20(22):6575. https://doi.org/10.3390/s20226575
Chicago/Turabian StyleYang, Lingjie, Zuxin Zhang, and Xiaowen Hu. 2020. "Cultivar Discrimination of Single Alfalfa (Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis" Sensors 20, no. 22: 6575. https://doi.org/10.3390/s20226575
APA StyleYang, L., Zhang, Z., & Hu, X. (2020). Cultivar Discrimination of Single Alfalfa (Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis. Sensors, 20(22), 6575. https://doi.org/10.3390/s20226575