Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data
Abstract
1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Reanalysis Products
2.1.2. Radiosonde Data
2.1.3. GNSS Observations
2.2. Methods
Deriving the ZTD and ZWD from MERRA-2 Meteorological Data at GNSS Stations and Radiosonde Stations
3. Results and Discussion
3.1. Accuracy Comparison of the MERRA-2 ZTD and IGS ZTD
3.2. Accuracy Comparison of the MERRA-2 ZWD/ZTD and Radiosonde Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hofmeister, A.; Böhm, J. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis. J. Geod. 2017, 91, 945–964. [Google Scholar] [CrossRef] [PubMed]
- Hobiger, T.; Ichikawa, R.; Koyama, Y.; Kondo, T. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res. Atmos 2008, 113, D20. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Shimada, M.; Furuya, M. InSAR observation and numerical modeling of the water vapor signal during a heavy rain: A case study of the 2008 Seino event, central Japan. Geophys. Res. Lett. 2013, 40, 4740–4744. [Google Scholar] [CrossRef]
- Mendes, V.B.; Prates, G.; Pavlis, E.C.; Pavlis, D.E.; Langley, R.B. Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett. 2002, 29, 53. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Zus, F.; Heinkelmann, R.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Improving BeiDou real-time precise point positioning with numerical weather models. J. Geod. 2017, 91, 1019–1029. [Google Scholar] [CrossRef]
- Santerre, R. Impact of GPS satellite sky distribution. Manuscr. Geod. 1991, 16, 28–53. [Google Scholar]
- Yao, Y.; Xu, X.; Xu, C.; Peng, W.; Wan, Y. GGOS tropospheric delay forecast product performance evaluation and its application in real-time PPP. J. Atmos. Sol. Terr. Phys. 2018, 175, 1–17. [Google Scholar] [CrossRef]
- Tregoning, P.; Herring, T.A. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys. Res. Lett. 2006, 33, L23303. [Google Scholar] [CrossRef]
- Pany, T.; Pesec, P.; Stangl, G. Elimination of tropospheric path delays in GPS observations with the ECMWF numerical weather model. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 487–492. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Wang, S.H. Evaluation of the NCEP-NCAR and ECMWF15-and 40-yr reanalyzes using radiosonde data from two independent Arctic field experiments. Am. Meteorol. Soc. 2005, 133, 3562–3578. [Google Scholar]
- Krueger, E.; Schüler, T.; Hein, G.W.; Martellucci, A.; Blarzino, G. Galileo tropospheric correction approaches developed within GSTB-V1. In Proceedings of the ENC-GNSS 2004, Rotterdam, The Netherlands, 16–19 May 2004. [Google Scholar]
- Ibrahim, H.E.; El-RRabbany, A. Regional stochastic models for NOAA-based residual tropospheric delays. J. Navig. 2008, 61, 209–219. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Böhm, J.; Moeller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef]
- Schüler, T. The TropGrid2 standard tropospheric correction model. GPS Solut. 2014, 18, 123–131. [Google Scholar] [CrossRef]
- Song, S.; Zhu, W.; Chen, Q.; Zhao, J.; Qu, W. Preliminary establishment of the tropospheric delay correction model (SHAO) over China. In Proceedings of the First China Satellite Navigation Annual Conference, Portland, OR, USA, 20–21 September 2010. [Google Scholar]
- Li, W.; Yuan, Y.B.; Ou, J.K.; Li, H.; Li, Z. A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull. 2012, 57, 2132–2139. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.B.; Ou, J.K. IGGtrop_SH and IGGtrop_rH: Two improved empirical tropospheric delay models based on vertical reduction functions. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Song, S.; Chen, Q.; Zhou, W.; Zhu, W. Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile. Chin. J. Geophys. 2014, 57, 3140–3153. (In Chinese) [Google Scholar]
- Yao, Y.; He, C.; Zhang, B.; Xu, C. A new global zenith tropospheric delay model GZTD. Chin. J. Geophys. 2013, 56, 2218–2227. (In Chinese) [Google Scholar]
- Yao, Y.; Hu, Y.; Yu, C. An improved Global Zenith Tropospheric Delay Model. Acta Geod. Cartogr. Sin. 2015, 44, 242–249. [Google Scholar]
- Yao, Y.; Hu, Y.; Zhang, B. Establishment of a global zenith tropospheric delay model using multi-source data. Chin. Sci. Bull. 2016, 61, 2730–2741. [Google Scholar]
- Sun, Z.; Zhang, B.; Yao, Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017. Remote Sens. 2019, 11, 1893. [Google Scholar] [CrossRef]
- Wilgan, K.; Hadas, T.; Hordyniec, P.; Bosy, J. Real-time precise point positioning augmented with high-resolution numerical weather prediction model. GPS Solut. 2017, 21, 1341–1353. [Google Scholar] [CrossRef]
- Zheng, F.; Lou, Y.; Gu, S. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. J. Geod. 2018, 92, 545–560. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Heise, S.; Heise, S.; Liou, Y.; Zhu, W.; Zhao, J. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China. GPS Solut. 2011, 15, 415–425. [Google Scholar] [CrossRef]
- Chen, Q.; Song, S.; Zhu, Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area. Chin. J. Geophys. 2012, 55, 1541–1548. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Xu, T.; Nie, W.; Jiang, C.; Yang, Y.; Fang, Z.; Li, M.; Zhang, Z. Evaluation of precipitable water vapor from five reanalysis products with Ground-Based GNSS observations. Remote Sens. 2020, 12, 1817. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, T.; Wang, S.; Nie, S.; Sun, Z. Evaluation of zenith tropospheric delay derived from ERA5 data over China using GNSS observations. Remote Sens. 2020, 12, 663. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef]
- Gelaro, R.; Mccarty, W.; Suárez, M.; Todling, R.; Zhao, B. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Hackman, C.; Byram, S.M. IGS Troposphere Working Group 2013. Available online: https://boris.unibe.ch/80305/8/2013_techreport.pdf#page=193 (accessed on 14 October 2020).
- Byun, S.H.; Bar-Sever, Y.E. A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 2009, 83, 367–373. [Google Scholar] [CrossRef]
- Thayer, G. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.; Rocken, C.; Anthes, R.; Ware, R. GPS Meteorology’ Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Saastamioinen, J. Contributions to the theory atmospheric refraction, Part II Refraction corrections in satellite Geodesy. Bull. Geo 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Sheng, F.; Mao, J.; Li, J.; Zhang, A.; Sang, J.; Pan, N. Atmospheric Physics; Peking University Press: Beijing, China, 2013. [Google Scholar]
- Zhang, C.; Guo, C.; Chen, J.; Zhang, L.; Wang, B. EGM 2008 and its application analysis in Chinese mainland. Acta Geodaehca Et Ca Riog Raphica Slnlea 2009, 38, 283–289. [Google Scholar]
- Wang, J.; Zhang, L.; Dai, A. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res. 2005, 110, D21101. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P.; Müller, R.; Thenkabail, P. Retrieving precipitable water vapor data using GPS zenith delays and global reanalysis data in China. Remote Sens. 2016, 8, 389. [Google Scholar] [CrossRef]
- Janssen, V.; Ge, L.; Rizos, C. Tropospheric corrections to SAR interferometry from GPS observations. GPS Solut. 2004, 8, 140–151. [Google Scholar] [CrossRef]
Year | Bias/cm | RMS/cm | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
2015 | −1.49 | 1.96 | 0.41 | 0.44 | 2.6 | 1.28 |
2016 | −1.28 | 2.47 | 0.43 | 0.39 | 2.9 | 1.35 |
2017 | −1.28 | 2.28 | 0.5 | 0.42 | 2.67 | 1.34 |
Station Name | Bias/cm | RMS/cm |
---|---|---|
KELY | 0.99 [−1.82, 3.88] | 1.31 [0.11, 4.66] |
GOL2 | 0.69 [−1.32, 3.50] | 1.17 [0.18, 4.04] |
BJCO | 0.35 [−3.78, 4.56] | 1.80 [0.23, 5.55] |
SYOG | 0.15 [−0.73, 1.03] | 0.44 [0.08, 1.70] |
DUND | 0.44 [−1.93, 2.98] | 1.21 [0.21, 3.82] |
MAL2 | −0.38 [−5.07, 4.35] | 1.80 [0.14, 5.46] |
Bias/cm | RMS/cm | |||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
ZWD | −2.41 | 3.64 | 0.47 | 0.04 | 4.5 | 1.36 |
ZTD | −2.66 | 4.59 | 0.46 | 0.37 | 4.7 | 1.44 |
ZWD | ZTD | |||
---|---|---|---|---|
Station Name | Bias/cm | RMS/cm | Bias/cm | RMS/cm |
4018 | 0.24 [−2.14, 3.06] | 0.65 [0, 3.37] | 0.24 [−2.12, 2.92] | 0.65 [0.01, 3.20] |
54857 | 0.44 [−3.51, 4.46] | 1.40 [0.01, 6.57] | 0.32 [−3.65, 4.28] | 1.38 [0.03, 6.44] |
91334 | 1.80 [−4.13, 6.30] | 2.57 [0.13, 7.34] | 1.27 [−7.69, 6.07] | 2.28 [0.14, 8.06] |
89512 | −0.40 [−1.83, 0.90] | 0.48 [0, 1.83] | 0.21 [−1.66, 2.04] | 0.54 [0, 2.04] |
94866 | 0.48 [−1.29, 2.76] | 0.93 [0.02, 2.89] | 0.20 [−1.57, 2.41] | 0.84 [0.04, 2.71] |
82824 | 0.57 [−3.27, 6.31] | 1.64 [0, 6.31] | −0.32 [−4.11, 5.60] | 1.65 [0.01, 5.80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Guo, L.; Liu, L.; Chen, H.; Chen, J.; Xie, S. Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data. Sensors 2020, 20, 6440. https://doi.org/10.3390/s20226440
Huang L, Guo L, Liu L, Chen H, Chen J, Xie S. Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data. Sensors. 2020; 20(22):6440. https://doi.org/10.3390/s20226440
Chicago/Turabian StyleHuang, Liangke, Lijie Guo, Lilong Liu, Hua Chen, Jun Chen, and Shaofeng Xie. 2020. "Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data" Sensors 20, no. 22: 6440. https://doi.org/10.3390/s20226440
APA StyleHuang, L., Guo, L., Liu, L., Chen, H., Chen, J., & Xie, S. (2020). Evaluation of the ZWD/ZTD Values Derived from MERRA-2 Global Reanalysis Products Using GNSS Observations and Radiosonde Data. Sensors, 20(22), 6440. https://doi.org/10.3390/s20226440