Federated Learning in Smart City Sensing: Challenges and Opportunities
Abstract
:1. Introduction
2. Challenges in Smart Cities Sensing
2.1. Data Trustworthiness
2.2. User Incentives
2.3. Data Quality Management
2.4. Node Deployment
2.5. Energy Consumption
2.6. User Privacy Protection
3. Review of Federated Learning Solutions
- Step 1: Each participant downloads the latest model from server A;
- Step 2: Each participant trains the model using local data, uploads the encrypted gradient to server A, and server A aggregates the gradient update model parameters of each user;
- Step 3: Server A returns the updated model to each participant;
- Step 4: Each participant updates their own model.
- Selection: At the beginning of each training round, a predefined subset of participating users is selected. This selection method can be adjusted or calibrated based on the server requirements or with a custom selection methodology.
- Configuration: The server uses the selected aggregation method and sends the training parameters and model configuration to the selected participants. The participants can proceed to model training.
- Reporting: The participants have trained their models and update the server with their parameters and the server aggregates the updates.
3.1. Aggregation Methods
3.2. Reputation Models to Ensure Data Trustworthiness
3.3. Privacy Preservation
3.4. BlockChain
4. Opportunities for Federated Learning in Smart Cities Sensing
4.1. User Incentives
4.2. Data Quality
4.3. Data Privacy Protection
4.4. Server Side Overhead
4.5. Federated Learning Applications
4.5.1. Federated Visual Security Sensing
4.5.2. Federated Autonomous Vehicles
4.5.3. Federated Aided Diagnosis
5. Open Issues, Related Challenges and Opportunities
5.1. Energy Consumption
5.2. Adversarial Attacks
5.3. Data Distribution
6. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hancke, G.P.; Hancke, G.P., Jr. The role of advanced sensing in smart cities. Sensors 2013, 13, 393–425. [Google Scholar] [CrossRef] [Green Version]
- Okai, E.; Feng, X.; Sant, P. Smart Cities Survey. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 1726–1730. [Google Scholar]
- Giffinger, R.; Haindlmaier, G.; Kramar, H. The role of rankings in growing city competition. Urban Res. Pract. 2010, 3, 299–312. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. On the social shaping dimensions of smart sustainable cities: A study in science, technology, and society. Sustain. Cities Soc. 2017, 29, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Zhao, K.; Ge, L. A survey on the internet of things security. In Proceedings of the 2013 9th International Conference on Computational Intelligence and Security, Leshan, China, 14–15 December 2013; pp. 663–667. [Google Scholar]
- Vermesan, O.; Friess, P.; Guillemin, P.; Gusmeroli, S.; Sundmaeker, H.; Bassi, A.; Jubert, I.S.; Mazura, M.; Harrison, M.; Eisenhauer, M.; et al. Internet of things strategic research roadmap. Internet Things Glob. Technol. Soc. Trends 2011, 1, 9–52. [Google Scholar]
- Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT middleware: A survey on issues and enabling technologies. IEEE Internet Things J. 2016, 4, 1–20. [Google Scholar] [CrossRef]
- Ray, P.P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46. [Google Scholar] [CrossRef]
- Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for internet of things (IoT) security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [Google Scholar] [CrossRef] [Green Version]
- Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and challenges for realising the Internet of Things. Clust. Eur. Res. Proj. Internet Things Eur. Comm. 2010, 3, 34–36. [Google Scholar]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Pouryazdan, M.; Kantarci, B.; Soyata, T.; Song, H. Anchor-Assisted and Vote-Based Trustworthiness Assurance in Smart City Crowdsensing. IEEE Access 2016, 4, 529–541. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Soyata, T.; Kantarci, B.; Boukerche, A.; Kaptan, C. Sensing, communication and security planes: A new challenge for a smart city system design. Comput. Netw. 2018, 144, 163–200. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Nussbaum, B.H.; Anjomshoa, F.; Kantarci, B.; Soyata, T. A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities. Sustain. Cities Soc. 2019, 50, 101660. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Dinesh, K.; Shishvan, O.R.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A Survey of Healthcare Internet of Things (HIoT): A Clinical Perspective. IEEE Internet Things J. 2019, 7, 53–71. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Kaptan, C.; Soyata, T.; Kantarci, B.; Boukerche, A. Smart City System Design: A Comprehensive Study of the Application and Data Planes. ACM Comput. Surv. (CSUR) 2019, 52, 1–38. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a service model for smart cities supported by internet of things. Trans. Emerg. Telecommun. Technol. 2014, 25, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.; Tang, J.; Xiao, X.; Xue, G. Sensing as a service: Challenges, solutions and future directions. IEEE Sens. J. 2013, 13, 3733–3741. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Y.; Zhang, X.; Li, L.; Cheng, Y.; Chen, T.; Hong, M.; Yang, Q. A communication efficient vertical federated learning framework. arXiv 2019, arXiv:1912.11187. [Google Scholar]
- Capponi, A.; Fiandrino, C.; Kantarci, B.; Foschini, L.; Kliazovich, D.; Bouvry, P. A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 2419–2465. [Google Scholar] [CrossRef] [Green Version]
- Habibzadeh, H.; Boggio-Dandry, A.; Qin, Z.; Soyata, T.; Kantarci, B.; Mouftah, H.T. Soft sensing in smart cities: Handling 3Vs using recommender systems, machine intelligence, and data analytics. IEEE Commun. Mag. 2018, 56, 78–86. [Google Scholar] [CrossRef]
- Zaslavsky, A.; Perera, C.; Georgakopoulos, D. Sensing as a service and big data. arXiv 2013, arXiv:1301.0159. [Google Scholar]
- Lau, B.P.L.; angijerathne, N.; Ng, B.K.K.; Yuen, C. Sensor fusion for public space utilization monitoring in a smart city. IEEE Internet Things J. 2017, 5, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Al-Fuqaha, A. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Habibzadeh, H.; Qin, Z.; Soyata, T.; Kantarci, B. Large-scale distributed dedicated-and non-dedicated smart city sensing systems. IEEE Sens. J. 2017, 17, 7649–7658. [Google Scholar] [CrossRef]
- Brisimi, T.S.; Cassandras, C.G.; Osgood, C.; Paschalidis, I.C.; Zhang, Y. Sensing and classifying roadway obstacles in smart cities: The street bump system. IEEE Access 2016, 4, 1301–1312. [Google Scholar] [CrossRef]
- Dash, S.K.; Mohapatra, S.; Pattnaik, P.K. A survey on applications of wireless sensor network using cloud computing. Int. J. Comput. Sci. Emerg. Technol. 2010, 1, 50–55. [Google Scholar]
- Misra, S.; Chatterjee, S.; Obaidat, M.S. On theoretical modeling of sensor cloud: A paradigm shift from wireless sensor network. IEEE Syst. J. 2014, 11, 1084–1093. [Google Scholar] [CrossRef]
- Shu, L.; Chen, Y.; Huo, Z.; Bergmann, N.; Wang, L. When mobile crowd sensing meets traditional industry. IEEE Access 2017, 5, 15300–15307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, Z.; Sun, W.; Liu, Y.; Tang, S.; Xing, K.; Mao, X. Incentives for mobile crowd sensing: A survey. IEEE Commun. Surv. Tutor. 2015, 18, 54–67. [Google Scholar] [CrossRef]
- Jin, H.; Su, L.; Chen, D.; Nahrstedt, K.; Xu, J. Quality of information aware incentive mechanisms for mobile crowd sensing systems. In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou, China, 22–25 June 2015; pp. 167–176. [Google Scholar]
- Jaimes, L.G.; Vergara-Laurens, I.J.; Raij, A. A survey of incentive techniques for mobile crowd sensing. IEEE Internet Things J. 2015, 2, 370–380. [Google Scholar] [CrossRef]
- Lin, J.; Yang, D.; Li, M.; Xu, J.; Xue, G. Frameworks for privacy-preserving mobile crowdsensing incentive mechanisms. IEEE Trans. Mob. Comput. 2017, 17, 1851–1864. [Google Scholar] [CrossRef]
- Wu, D.; Si, S.; Wu, S.; Wang, R. Dynamic trust relationships aware data privacy protection in mobile crowd-sensing. IEEE Internet Things J. 2017, 5, 2958–2970. [Google Scholar] [CrossRef]
- Jin, H.; Su, L.; Xiao, H.; Nahrstedt, K. Inception: Incentivizing privacy-preserving data aggregation for mobile crowd sensing systems. In Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Paderborn, Germany, 5–8 July 2016; pp. 341–350. [Google Scholar]
- Ni, J.; Zhang, K.; Xia, Q.; Lin, X.; Shen, X.S. Enabling strong privacy preservation and accurate task allocation for mobile crowdsensing. IEEE Trans. Mob. Comput. 2019, 19, 1317–1331. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V. Security and privacy for cloud-based IoT: Challenges. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for Smart City Monitoring. IEEE Commun. Surv. Tutor. 2019, 21, 1533–1560. [Google Scholar] [CrossRef]
- Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Jin, S.; Quek, T.Q.; Poor, H.V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3454–3469. [Google Scholar] [CrossRef] [Green Version]
- Lyu, L.; Yu, H.; Yang, Q. Threats to Federated Learning: A Survey. arXiv 2020, arXiv:2003.02133. [Google Scholar]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process. Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Z.; Yu, Z.; Wang, Y.; Yen, N.Y.; Huang, R.; Zhou, X. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM Comput. Surv. (CSUR) 2015, 48, 7. [Google Scholar] [CrossRef]
- Ganti, R.K.; Ye, F.; Lei, H. Mobile crowdsensing: Current state and future challenges. IEEE Commun. Mag. 2011, 49, 32–39. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, D.; Yuan, P. Opportunities in mobile crowd sensing. IEEE Commun. Mag. 2014, 52, 29–35. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, D.; Wang, Y.; Chen, C.; Han, X.; M’hamed, A. Sparse mobile crowdsensing: Challenges and opportunities. IEEE Commun. Mag. 2016, 54, 161–167. [Google Scholar] [CrossRef]
- Zhou, Z.; Liao, H.; Gu, B.; Huq, K.M.S.; Mumtaz, S.; Rodriguez, J. Robust mobile crowd sensing: When deep learning meets edge computing. IEEE Netw. 2018, 32, 54–60. [Google Scholar] [CrossRef]
- Sherchan, W.; Jayaraman, P.P.; Krishnaswamy, S.; Zaslavsky, A.; Loke, S.; Sinha, A. Using on-the-move mining for mobile crowdsensing. In Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management, Bengaluru, India, 23–26 July 2012; pp. 115–124. [Google Scholar]
- Liu, Y.; Guo, B.; Wang, Y.; Wu, W.; Yu, Z.; Zhang, D. TaskMe: Multi-task allocation in mobile crowd sensing. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 403–414. [Google Scholar]
- Xiao, Y.; Simoens, P.; Pillai, P.; Ha, K.; Satyanarayanan, M. Lowering the barriers to large-scale mobile crowdsensing. In Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, Jekyll Island, GA, USA, 26–27 February 2013; p. 9. [Google Scholar]
- Wan, J.; Liu, J.; Shao, Z.; Vasilakos, A.V.; Imran, M.; Zhou, K. Mobile crowd sensing for traffic prediction in internet of vehicles. Sensors 2016, 16, 88. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Li, X.; Ngai, E.C.H.; Leung, V.C.; Kruchten, P. Multidimensional context-aware social network architecture for mobile crowdsensing. IEEE Commun. Mag. 2014, 52, 78–87. [Google Scholar] [CrossRef]
- Marjanović, M.; Antonić, A.; Žarko, I.P. Edge computing architecture for mobile crowdsensing. IEEE Access 2018, 6, 10662–10674. [Google Scholar] [CrossRef]
- He, D.; Chan, S.; Guizani, M. User privacy and data trustworthiness in mobile crowd sensing. IEEE Wirel. Commun. 2015, 22, 28–34. [Google Scholar] [CrossRef]
- White, D.E.; Oelke, N.D.; Friesen, S. Management of a large qualitative data set: Establishing trustworthiness of the data. Int. J. Qual. Methods 2012, 11, 244–258. [Google Scholar] [CrossRef]
- Pouryazdan, M.; Kantarci, B. The smart citizen factor in trustworthy smart city crowdsensing. IT Prof. 2016, 18, 26–33. [Google Scholar] [CrossRef]
- Pouryazdan, M.; Kantarci, B.; Soyata, T.; Foschini, L.; Song, H. Quantifying User Reputation Scores, Data Trustworthiness, and User Incentives in Mobile Crowd-Sensing. IEEE Access 2017, 5, 1382–1397. [Google Scholar] [CrossRef]
- Bertino, E. Data trustworthiness—Approaches and research challenges. In Data Privacy Management, Autonomous Spontaneous Security, and Security Assurance; Springer: Wroclaw, Poland, 2014; pp. 17–25. [Google Scholar]
- Suhail, S.; Hong, C.S.; Lodhi, M.A.; Zafar, F.; Khan, A.; Bashir, F. Data trustworthiness in iot. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–15 January 2018; pp. 414–419. [Google Scholar]
- Bertino, E.; Dai, C.; Kantarcioglu, M. The challenge of assuring data trustworthiness. In Proceedings of the International Conference on Database Systems for Advanced Applications, Brisbane, Australia, 21–23 April 2009; pp. 22–33. [Google Scholar]
- Ogie, R.I.; Forehead, H.; Clarke, R.J.; Perez, P. Participation Patterns and Reliability of Human Sensing in Crowd-Sourced Disaster Management. Inf. Syst. Front. 2017, 20, 713–728. [Google Scholar] [CrossRef]
- Dasari, V.S.; Kantarci, B.; Simsek, M. Trustworthiness and Comfort-Aware Participant Recruitment for Mobile Crowd-Sensing in Smart Environments. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–6. [Google Scholar]
- Luo, T.; Kanhere, S.S.; Huang, J.; Das, S.K.; Wu, F. Sustainable Incentives for Mobile Crowdsensing: Auctions, Lotteries, and Trust and Reputation Systems. IEEE Commun. Mag. 2017, 55, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Shi, J.; Zhang, Q.; Tian, X.; Huang, Z.; Yu, H.; Cheng, Y.; Shen, X. Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Trans. Veh. Technol. 2014, 64, 4203–4214. [Google Scholar] [CrossRef]
- Yang, G.; He, S.; Shi, Z.; Chen, J. Promoting cooperation by the social incentive mechanism in mobile crowdsensing. IEEE Commun. Mag. 2017, 55, 86–92. [Google Scholar] [CrossRef]
- Jin, H.; Su, L.; Ding, B.; Nahrstedt, K.; Borisov, N. Enabling privacy-preserving incentives for mobile crowd sensing systems. In Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016; pp. 344–353. [Google Scholar]
- Jin, H.; Su, L.; Xiao, H.; Nahrstedt, K. Incentive mechanism for privacy-aware data aggregation in mobile crowd sensing systems. IEEE/ACM Trans. Netw. 2018, 26, 2019–2032. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Yang, D.; Wang, E.; Xue, G. Quality-aware and fine-grained incentive mechanisms for mobile crowdsensing. In Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016; pp. 354–363. [Google Scholar]
- Gisdakis, S.; Giannetsos, T.; Papadimitratos, P. Security, privacy, and incentive provision for mobile crowd sensing systems. IEEE Internet Things J. 2016, 3, 839–853. [Google Scholar] [CrossRef]
- Han, G.; Liu, L.; Chan, S.; Yu, R.; Yang, Y. HySense: A hybrid mobile crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint. IEEE Commun. Mag. 2017, 55, 93–99. [Google Scholar] [CrossRef]
- Ogie, R.I. Adopting incentive mechanisms for large-scale participation in mobile crowdsensing: From literature review to a conceptual framework. Hum. Centric Comput. Inf. Sci. 2016, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Rehman, A.U.; Zheng, J.; Jan, M.A.; Alam, M. Mobile crowdsensing: A survey on privacy-preservation, task management, assignment models, and incentives mechanisms. Future Gener. Comput. Syst. 2019, 100, 456–472. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, F.; Gao, X.; Zhu, H.; Tang, S.; Chen, G. A budget feasible incentive mechanism for weighted coverage maximization in mobile crowdsensing. IEEE Trans. Mob. Comput. 2016, 16, 2392–2407. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.H.; Tang, J.; Yang, D.; Hui, P.; Wang, W. Online quality-aware incentive mechanism for mobile crowd sensing with extra bonus. IEEE Trans. Mob. Comput. 2018, 18, 2589–2603. [Google Scholar] [CrossRef]
- Jin, H.; Su, L.; Nahrstedt, K. CENTURION: Incentivizing multi-requester mobile crowd sensing. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2017), Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar]
- Xiong, J.; Chen, X.; Yang, Q.; Chen, L.; Yao, Z. A task-oriented user selection incentive mechanism in edge-aided mobile crowdsensing. IEEE Trans. Netw. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Zhao, D.; Ma, H.; Liu, L. Frugal online incentive mechanisms for mobile crowd sensing. IEEE Trans. Veh. Technol. 2016, 66, 3319–3330. [Google Scholar] [CrossRef]
- Li, H.; Ota, K.; Dong, M.; Guo, M. Mobile crowdsensing in software defined opportunistic networks. IEEE Commun. Mag. 2017, 55, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Rao, Z.; Xu, L.; Yang, D.; Li, T. Incentive mechanism for multiple cooperative tasks with compatible users in mobile crowd sensing via online communities. IEEE Trans. Mob. Comput. 2019, 19, 1618–1633. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Wang, X. Incentive mechanisms for mobile crowdsensing with heterogeneous sensing costs. IEEE Trans. Veh. Technol. 2019, 68, 3992–4002. [Google Scholar] [CrossRef]
- Wu, Y.; Li, F.; Ma, L.; Xie, Y.; Li, T.; Wang, Y. A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet Things J. 2019, 6, 7648–7658. [Google Scholar] [CrossRef]
- Nan, W.; Guo, B.; Huangfu, S.; Yu, Z.; Chen, H.; Zhou, X. A cross-space, multi-interaction-based dynamic incentive mechanism for mobile crowd sensing. In Proceedings of the 2014 IEEE 11th International Conference on Ubiquitous Intelligence and Computing and 2014 IEEE 11th International Conference on Autonomic and Trusted Computing and 2014 IEEE 14th International Conference on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, 9–12 December 2014; pp. 79–186. [Google Scholar]
- Suliman, A.; Otrok, H.; Mizouni, R.; Singh, S.; Ouali, A. A greedy-proof incentive-compatible mechanism for group recruitment in mobile crowd sensing. Future Gener. Comput. Syst. 2019, 101, 1158–1167. [Google Scholar] [CrossRef]
- Duan, Z.; Tian, L.; Yan, M.; Cai, Z.; Han, Q.; Yin, G. Practical incentive mechanisms for IoT-based mobile crowdsensing systems. IEEE Access 2017, 5, 20383–20392. [Google Scholar] [CrossRef]
- Nie, J.; Xiong, Z.; Niyato, D.; Wang, P.; Luo, J. A socially-aware incentive mechanism for mobile crowdsensing service market. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–7. [Google Scholar]
- Wang, Z.; Li, J.; Hu, J.; Ren, J.; Li, Z.; Li, Y. Towards privacy-preserving incentive for mobile crowdsensing under an untrusted platform. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2019), Paris, France, 29 April–2 May 2019; pp. 2053–2061. [Google Scholar]
- Zhang, X.; Xue, G.; Yu, R.; Yang, D.; Tang, J. Robust incentive tree design for mobile crowdsensing. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 458–468. [Google Scholar]
- Zhang, X.; Liang, L.; Luo, C.; Cheng, L. Privacy-preserving incentive mechanisms for mobile crowdsensing. IEEE Pervasive Comput. 2018, 17, 47–57. [Google Scholar] [CrossRef]
- Zhao, B.; Tang, S.; Liu, X.; Zhang, X. PACE: Privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing. IEEE Trans. Mob. Comput. 2020. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Zhou, Y.; Li, Z.; Chen, S.; He, X. A truthful incentive mechanism for online recruitment in mobile crowd sensing system. Sensors 2017, 17, 79. [Google Scholar] [CrossRef] [Green Version]
- Angelopoulos, C.M.; Nikoletseas, S.; Raptis, T.P.; Rolim, J.D. Characteristic utilities, join policies and efficient incentives in mobile crowdsensing systems. In Proceedings of the 2014 IFIP Wireless Days (WD), Rio de Janeiro, Brazil, 12–14 November 2014; pp. 1–6. [Google Scholar]
- Dimitriou, T.; Krontiris, I. Privacy-respecting auctions as incentive mechanisms in mobile crowd sensing. In Proceedings of the IFIP International Conference on Information Security Theory and Practice, Heraklion, Crete, Greece, 24–25 August 2015; pp. 20–35. [Google Scholar]
- Tao, D.; Zhong, S.; Luo, H. Staged incentive and punishment mechanism for mobile crowd sensing. Sensors 2018, 18, 2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Wu, F.; Tang, S.; Gao, X.; Yang, B.; Chen, G. On designing data quality-aware truth estimation and surplus sharing method for mobile crowdsensing. IEEE J. Sel. Areas Commun. 2017, 35, 832–847. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Z.; Wu, F.; Tang, S.; Chen, G. Context-aware data quality estimation in mobile crowdsensing. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2017), Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar]
- Luo, T.; Huang, J.; Kanhere, S.S.; Zhang, J.; Das, S.K. Improving IoT data quality in mobile crowd sensing: A cross validation approach. IEEE Internet Things J. 2019, 6, 5651–5664. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, S.; Yan, P.; Yang, Q.; Yang, X.; McCann, J. Data quality guarantee for credible caching device selection in mobile crowdsensing systems. IEEE Wirel. Commun. 2018, 25, 58–64. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Tan, J.; Gao, S. Data quality aware task allocation with budget constraint in mobile crowdsensing. IEEE Access 2018, 6, 48010–48020. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Sharif, K.; Wang, Y. When user interest meets data quality: A novel user filter scheme for mobile crowd sensing. In Proceedings of the 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, China, 15–17 December 2017; pp. 97–104. [Google Scholar]
- Xia, X.; Zhou, Y.; Li, J.; Yu, R. Quality-aware sparse data collection in MEC-enhanced mobile crowdsensing systems. IEEE Trans. Comput. Soc. Syst. 2019, 6, 1051–1062. [Google Scholar] [CrossRef]
- Poe, W.Y.; Schmitt, J.B. Node deployment in large wireless sensor networks: Coverage, energy consumption, and worst-case delay. In Proceedings of the Asian Internet Engineering Conference, Bangkok, Thailand, 18–20 November 2009; pp. 77–84. [Google Scholar]
- Younis, O.; Krunz, M.; Ramasubramanian, S. Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Netw. 2006, 20, 20–25. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, D.; Yan, Z.; Xiong, H.; Xie, B. effSense: A novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1549–1563. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhang, B.; Su, X.; Ma, J.; Wang, W.; Leung, K.K. Energy-aware participant selection for smartphone-enabled mobile crowd sensing. IEEE Syst. J. 2015, 11, 1435–1446. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, D.; Helal, S. Energy saving techniques in mobile crowd sensing: Current state and future opportunities. IEEE Commun. Mag. 2018, 56, 164–169. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, D.; Xiong, H. effSense: Energy-efficient and cost-effective data uploading in mobile crowdsensing. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 1075–1086. [Google Scholar]
- Wang, J.; Tang, J.; Xue, G.; Yang, D. Towards energy-efficient task scheduling on smartphones in mobile crowd sensing systems. Comput. Netw. 2017, 115, 100–109. [Google Scholar] [CrossRef]
- Zhou, Z.; Feng, J.; Gu, B.; Ai, B.; Mumtaz, S.; Rodriguez, J.; Guizani, M. When mobile crowd sensing meets UAV: Energy-efficient task assignment and route planning. IEEE Trans. Commun. 2018, 66, 5526–5538. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, D.; Wang, L.; Chaouchi, H. EMC 3: Energy-efficient data transfer in mobile crowdsensing under full coverage constraint. IEEE Trans. Mob. Comput. 2014, 14, 1355–1368. [Google Scholar] [CrossRef]
- Marjanović, M.; Skorin-Kapov, L.; Pripužić, K.; Antonić, A.; Žarko, I.P. Energy-aware and quality-driven sensor management for green mobile crowd sensing. J. Netw. Comput. Appl. 2016, 59, 95–108. [Google Scholar] [CrossRef]
- Tomasoni, M.; Capponi, A.; Fiandrino, C.; Kliazovich, D.; Granelli, F.; Bouvry, P. Why energy matters? Profiling energy consumption of mobile crowdsensing data collection frameworks. Pervasive Mob. Comput. 2018, 51, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Ma, R.; Chen, L.; Tian, Y.; Li, Q.; Liu, X.; Yao, Z. A personalized privacy protection framework for mobile crowdsensing in IIoT. IEEE Trans. Ind. Inform. 2019, 16, 4231–4241. [Google Scholar] [CrossRef]
- Alsheikh, M.A.; Jiao, Y.; Niyato, D.; Wang, P.; Leong, D.; Han, Z. The Accuracy-Privacy Tradeoff of Mobile Crowdsensing. arXiv 2017, arXiv:1702.04565. [Google Scholar]
- Ma, R.; Xiong, J.; Lin, M.; Yao, Z.; Lin, H.; Ye, A. Privacy protection-oriented mobile crowdsensing analysis based on game theory. In Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 1–4 August 2017; pp. 990–995. [Google Scholar]
- Wang, Z.; Hu, J.; Lv, R.; Wei, J.; Wang, Q.; Yang, D.; Qi, H. Personalized privacy-preserving task allocation for mobile crowdsensing. IEEE Trans. Mob. Comput. 2018, 18, 1330–1341. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207. [Google Scholar] [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. arXiv 2019, arXiv:1912.04977. [Google Scholar]
- Xu, G.; Li, H.; Liu, S.; Yang, K.; Lin, X. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 2019, 15, 911–926. [Google Scholar] [CrossRef]
- Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated learning in mobile edge networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 2031–2063. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw. 2019, 33, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated Learning for Wireless Communications: Motivation, Opportunities, and Challenges. IEEE Commun. Mag. 2020, 58, 46–51. [Google Scholar] [CrossRef]
- Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure aggregation for federated learning on user-held data. arXiv 2016, arXiv:1611.04482. [Google Scholar]
- Abad, M.S.H.; Ozfatura, E.; Gunduz, D.; Ercetin, O. Hierarchical federated learning across heterogeneous cellular networks. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8866–8870. [Google Scholar]
- Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D. Mobile edge computing, blockchain and reputation-based crowdsourcing iot federated learning: A secure, decentralized and privacy-preserving system. arXiv 2019, arXiv:1906.10893. [Google Scholar]
- Zhao, Z.; Feng, C.; Yang, H.H.; Luo, X. Federated-Learning-Enabled Intelligent Fog Radio Access Networks: Fundamental Theory, Key Techniques, and Future Trends. IEEE Wirel. Commun. 2020, 27, 22–28. [Google Scholar] [CrossRef]
- Chai, Z.; Fayyaz, H.; Fayyaz, Z.; Anwar, A.; Zhou, Y.; Baracaldo, N.; Ludwig, H.; Cheng, Y. Towards taming the resource and data heterogeneity in federated learning. In Proceedings of the 2019 {USENIX} Conference on Operational Machine Learning (OpML 19), Santa Clara, CA, USA, 20 May 2019; pp. 19–21. [Google Scholar]
- Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained edge computing systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Ju, C.; Wei, X.; Liu, Y.; Chen, T.; Yang, Q. HHHFL: Hierarchical Heterogeneous Horizontal Federated Learning for Electroencephalography. arXiv 2019, arXiv:1909.05784. [Google Scholar]
- Wang, G.; Dang, C.X.; Zhou, Z. Measure contribution of participants in federated learning. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2597–2604. [Google Scholar]
- Li, S.; Cheng, Y.; Liu, Y.; Wang, W.; Chen, T. Abnormal client behavior detection in federated learning. arXiv 2019, arXiv:1910.09933. [Google Scholar]
- Wang, G. Interpret federated learning with shapley values. arXiv 2019, arXiv:1905.04519. [Google Scholar]
- Song, T.; Tong, Y.; Wei, S. Profit Allocation for Federated Learning. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2577–2586. [Google Scholar]
- Li, Q.; Wen, Z.; He, B. Federated learning systems: Vision, hype and reality for data privacy and protection. arXiv 2019, arXiv:1907.09693. [Google Scholar]
- Yang, K.; Fan, T.; Chen, T.; Shi, Y.; Yang, Q. A quasi-newton method based vertical federated learning framework for logistic regression. arXiv 2019, arXiv:1912.00513. [Google Scholar]
- Feng, S.; Yu, H. Multi-Participant Multi-Class Vertical Federated Learning. arXiv 2020, arXiv:2001.11154. [Google Scholar]
- Gao, D.; Liu, Y.; Huang, A.; Ju, C.; Yu, H.; Yang, Q. Privacy-preserving heterogeneous federated transfer learning. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2552–2559. [Google Scholar]
- Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan, H.B.; et al. Towards federated learning at scale: System design. arXiv 2019, arXiv:1902.01046. [Google Scholar]
- Nishio, T.; Yonetani, R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, J.J.Q.; Kang, J.; Niyato, D.; Zhang, S. Privacy-Preserving Traffic Flow Prediction: A Federated Learning Approach. IEEE Internet Things J. 2020, 7/8, 7751–7763. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017; Singh, A., Zhu, J., Eds.; Volume 54, pp. 1273–1282. [Google Scholar]
- McMahan, H.B.; Ramage, D.; Talwar, K.; Zhang, L. Learning Differentially Private Recurrent Language Models. arXiv 2017, arXiv:1710.06963. [Google Scholar]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks. arXiv 2018, arXiv:1812.06127. [Google Scholar]
- Huang, L.; Yin, Y.; Fu, Z.; Zhang, S.; Deng, H.; Liu, D. Loadaboost: Loss-based adaboost federated machine learning on medical data. arXiv 2018, arXiv:1811.12629. [Google Scholar]
- Kang, J.; Xiong, Z.; Niyato, D.; Xie, S.; Zhang, J. Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 2019, 6, 10700–10714. [Google Scholar] [CrossRef]
- Wang, Y.; Kantarci, B. A Novel Reputation-Aware Client Selection Scheme for Federated Learning within Mobile Environments. In Proceedings of the IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Pisa, Italy, 14–16 September 2020. [Google Scholar]
- Kang, J.; Xiong, Z.; Niyato, D.; Zou, Y.; Zhang, Y.; Guizani, M. Reliable Federated Learning for Mobile Networks. IEEE Wirel. Commun. 2020, 27, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Shayan, M.; Fung, C.; Yoon, C.J.; Beschastnikh, I. Biscotti: A ledger for private and secure peer-to-peer machine learning. arXiv 2018, arXiv:1811.09904. [Google Scholar]
- Fung, C.; Yoon, C.J.M.; Beschastnikh, I. Mitigating Sybils in Federated Learning Poisoning. arXiv 2018, arXiv:1808.04866. [Google Scholar]
- Liu, Z.; Li, T.; Smith, V.; Sekar, V. Enhancing the Privacy of Federated Learning with Sketching. arXiv 2019, arXiv:1911.01812. [Google Scholar]
- Hao, M.; Li, H.; Luo, X.; Xu, G.; Yang, H.; Liu, S. Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Trans. Ind. Inform. 2019, 16, 6532–6542. [Google Scholar] [CrossRef]
- Awan, S.; Li, F.; Luo, B.; Liu, M. Poster: A reliable and accountable privacy-preserving federated learning framework using the blockchain. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; pp. 2561–2563. [Google Scholar]
- Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 2019, 16, 4177–4186. [Google Scholar] [CrossRef]
- Lyu, L.; Yu, J.; Nandakumar, K.; Li, Y.; Ma, X.; Jin, J.; Yu, H.; Ng, K.S. Towards Fair and Privacy-Preserving Federated Deep Models. arXiv 2019, arXiv:1906.01167. [Google Scholar]
- Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Lyu, L.; Liu, Y. Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Z.; Liu, Y.; Chen, T.; Cong, M.; Weng, X.; Niyato, D.; Yang, Q. A fairness-aware incentive scheme for federated learning. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–8 February 2020; pp. 393–399. [Google Scholar]
- Liu, Y.; Wei, J. Incentives for Federated Learning: A Hypothesis Elicitation Approach. arXiv 2020, arXiv:2007.10596. [Google Scholar]
- Zhan, Y.; Li, P.; Qu, Z.; Zeng, D.; Guo, S. A learning-based incentive mechanism for federated learning. IEEE Internet Things J. 2020, 7, 6360–6368. [Google Scholar] [CrossRef]
- Lin, Y.; Han, S.; Mao, H.; Wang, Y.; Dally, W.J. Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training. arXiv 2017, arXiv:1712.01887. [Google Scholar]
- Braun, T.; Fung, B.C.; Iqbal, F.; Shah, B. Security and privacy challenges in smart cities. Sustain. Cities Soc. 2018, 39, 499–507. [Google Scholar] [CrossRef]
- Zhang, K.; Ni, J.; Yang, K.; Liang, X.; Ren, J.; Shen, X.S. Security and privacy in smart city applications: Challenges and solutions. IEEE Commun. Mag. 2017, 55, 122–129. [Google Scholar] [CrossRef]
- Baig, Z.A.; Szewczyk, P.; Valli, C.; Rabadia, P.; Hannay, P.; Chernyshev, M.; Johnstone, M.; Kerai, P.; Ibrahim, A.; Sansurooah, K.; et al. Future challenges for smart cities: Cyber-security and digital forensics. Digit. Investig. 2017, 22, 3–13. [Google Scholar] [CrossRef]
- Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; Ilie-Zudor, E. Chained anomaly detection models for federated learning: An intrusion detection case study. Appl. Sci. 2018, 8, 2663. [Google Scholar] [CrossRef] [Green Version]
- Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and decision-making for autonomous vehicles. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 187–210. [Google Scholar] [CrossRef]
- Talebpour, A.; Mahmassani, H.S. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C Emerg. Technol. 2016, 71, 143–163. [Google Scholar] [CrossRef]
- Gerla, M.; Lee, E.K.; Pau, G.; Lee, U. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In Proceedings of the 2014 IEEE world Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 241–246. [Google Scholar]
- Imteaj, A.; Amini, M.H. Distributed sensing using smart end-user devices: Pathway to federated learning for autonomous IoT. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; pp. 1156–1161. [Google Scholar]
- Wang, J.; Jiang, C.; Zhang, K.; Quek, T.Q.; Ren, Y.; Hanzo, L. Vehicular sensing networks in a smart city: Principles, technologies and applications. IEEE Wirel. Commun. 2017, 25, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.M.; Saini, M.; El Saddik, A. Toward social internet of vehicles: Concept, architecture, and applications. IEEE Access 2015, 3, 343–357. [Google Scholar] [CrossRef]
- Samarakoon, S.; Bennis, M.; Saad, W.; Debbah, M. Distributed Federated Learning for Ultra-Reliable Low-Latency Vehicular Communications. IEEE Trans. Commun. 2020, 68, 1146–1159. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, K.; Somanath, S.; Sharlin, E. Communicating awareness and intent in autonomous vehicle-pedestrian interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- Haleem, A.; Javaid, M.; Khan, I.H. Current status and applications of artificial intelligence (AI) in medical field: An overview. Curr. Med. Res. Pract. 2019, 9, 231–237. [Google Scholar] [CrossRef]
- Baker, S.B.; Xiang, W.; Atkinson, I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access 2017, 5, 26521–26544. [Google Scholar] [CrossRef]
- Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 2018, 112, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Catarinucci, L.; De Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L. An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2015, 2, 515–526. [Google Scholar] [CrossRef]
- Tran, N.H.; Bao, W.; Zomaya, A.; NH, N.M.; Hong, C.S. Federated learning over wireless networks: Optimization model design and analysis. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1387–1395. [Google Scholar]
- Amiri, M.M.; Gündüz, D. Federated learning over wireless fading channels. IEEE Trans. Wirel. Commun. 2020, 19, 3546–3557. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; He, X.; Dai, H. On the Design of Communication Efficient Federated Learning over Wireless Networks. arXiv 2020, arXiv:2004.07351. [Google Scholar]
- Zeng, Q.; Du, Y.; Huang, K.; Leung, K.K. Energy-efficient radio resource allocation for federated edge learning. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Wang, Z.; Song, M.; Zhang, Z.; Song, Y.; Wang, Q.; Qi, H. Beyond inferring class representatives: User-level privacy leakage from federated learning. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2019), Paris, France, 29 April–2 May 2019; pp. 2512–2520. [Google Scholar]
- Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 739–753. [Google Scholar]
- Melis, L.; Song, C.; Cristofaro, E.D.; Shmatikov, V. Exploiting Unintended Feature Leakage in Collaborative Learning. arXiv 2018, arXiv:1805.04049. [Google Scholar]
- Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing federated learning through an adversarial lens. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 634–643. [Google Scholar]
- Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How To Backdoor Federated Learning. arXiv 2018, arXiv:1807.00459. [Google Scholar]
- Fang, M.; Cao, X.; Jia, J.; Gong, N.Z. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. arXiv 2019, arXiv:1911.11815. [Google Scholar]
- Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated Learning with Non-IID Data. arXiv 2018, arXiv:1806.00582. [Google Scholar]
- Kopparapu, K.; Lin, E. FedFMC: Sequential Efficient Federated Learning on Non-iid Data. arXiv 2020, arXiv:2006.10937. [Google Scholar]
Area | Ref. | Motivation and Key Idea | Proposed Approach | Open Issues and Further Opportunities |
---|---|---|---|---|
Protocol | [138] | Scalable production system for Federated Learning | Standard protocol as a basis for Federated Learning | Need for optimization for application-specific scenarios |
[139] | Promote client selection under heterogeneous resource scenarios | FedCS protocol to select users based on their resource availability | Relies on the truthfulness of user resource availability submissions. | |
[140] | Federated Learning for traffic prediction models | Suitable protocol for small-scale Federated Learning enabled traffic control | Extension to larger scale of recruited clients. | |
Aggregation | [141] | A standard aggregation method | FedAvg algorithm to aggregate the average model parameters of updates | An alternative to equally weighing all local model updates during aggregation. |
[143] | Optimize Federated Learning in heterogeneous networks | Proximal parameter to limit the impact of variable updates allowing partial work to be done | Solutions for the cases where not all updates are of positive contribution | |
[144] | Optimize Federated Learning through data distribution | Loss-based Adaptive Boosting to compare local model losses prior to aggregation | Extensions to consider heterogeneous contribution scenarios during aggregation | |
Reputation Models | [145] | Incentive to promote reliable Federated Learning | Multi-weight subjective logic to formulate reputation scores | Advanced reputation scores to directly reflect performance of users |
[146] | Enhanced client selection to improve model performance | Local model performance metrics to formulate reputation scores | Minimum computational overhead for assessment of reputation scores for every user | |
[147] | Reputation-awareness | Interaction records to generate reputation opinions | Reputation scores to reflect performance of users directly | |
Differential Privacy | [150] | Enhanced privacy preservation through sketching | Obfuscation of the original data to achieve differential privacy | Performance versus privacy gain |
[41] | Differential privacy in Federated Learning | Noise before model aggregation | Considering varied size and distribution of user data | |
[151] | Enhanced privacy and efficiency of Federated Learning in industrial AI applications | Add noise according to Gaussian distribution to local models | Extensive analyses on high-dimensional data | |
BlockChain | [152] | Accountable Federated Learning | Combine aggregator and blockchain to preserve privacy of users | Fairness assurance in participant rewarding |
[153] | Enhanced privacy for Federated Learning | Noise at the initial stage onto the original data, and use BlockChain to facilitate the Federated Learning process | Tackle potential performance issues due to noising too early | |
[154] | Improved fairness and privacy in Federated Learning | Scale rewards with respect to participant contribution | Extension to non-IID scenarios | |
[155] | Privacy Preserving Federated Learning for industrial IoT applications | Use blockchain with Inter-Planetary File System (IPFS) and noise to local model features | Extension to non-IID data or heterogeneous device scenarios |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.C.; Kantarci, B.; Oktug, S.; Soyata, T. Federated Learning in Smart City Sensing: Challenges and Opportunities. Sensors 2020, 20, 6230. https://doi.org/10.3390/s20216230
Jiang JC, Kantarci B, Oktug S, Soyata T. Federated Learning in Smart City Sensing: Challenges and Opportunities. Sensors. 2020; 20(21):6230. https://doi.org/10.3390/s20216230
Chicago/Turabian StyleJiang, Ji Chu, Burak Kantarci, Sema Oktug, and Tolga Soyata. 2020. "Federated Learning in Smart City Sensing: Challenges and Opportunities" Sensors 20, no. 21: 6230. https://doi.org/10.3390/s20216230