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Abstract: Smart Cities sensing is an emerging paradigm to facilitate the transition into smart city
services. The advent of the Internet of Things (IoT) and the widespread use of mobile devices with
computing and sensing capabilities has motivated applications that require data acquisition at a
societal scale. These valuable data can be leveraged to train advanced Artificial Intelligence (AI)
models that serve various smart services that benefit society in all aspects. Despite their effectiveness,
legacy data acquisition models backed with centralized Machine Learning models entail security and
privacy concerns, and lead to less participation in large-scale sensing and data provision for smart
city services. To overcome these challenges, Federated Learning is a novel concept that can serve
as a solution to the privacy and security issues encountered within the process of data collection.
This survey article presents an overview of smart city sensing and its current challenges followed by
the potential of Federated Learning in addressing those challenges. A comprehensive discussion of
the state-of-the-art methods for Federated Learning is provided along with an in-depth discussion
on the applicability of Federated Learning in smart city sensing; clear insights on open issues,
challenges, and opportunities in this field are provided as guidance for the researchers studying this
subject matter.

Keywords: federated learning; machine learning; smart cities sensing; internet of things;
security; privacy

1. Introduction

The global population is witnessing rapid annual growth, especially within urban city settings [1].
Maintaining efficient management of a wide span of information and resources is becoming
increasingly more difficult amid growing population, electronic devices, and data transmission [2].
These challenges associated with the growth of such services has motivated governments to look
for efficient ways to manage the operation of a city with respect to resource allocation and triggered
initiatives around the world to have a connected city system where each component leverages the
use of connected technology; these components include the following: economy and finance, citizens,
governance, transportation (i.e., mobility), sustainability (i.e., environment), and smart living [3–6].

The latest advancements in wireless communication technology have propelled the widespread
use of smart technologies, cloud computing, and the Internet of Things (IoT) [7]. IoT is the
network of devices that enables connectivity between people, things or services [8–11]. Advances in
manufacturing, sensor and cloud technologies results in a predicted up to 100 billion (with a minimum
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of 50 billion) devices with Internet connectivity by the end of 2020 [12]. The IoT-cloud environment
enables data acquisition and transmission from all parts of a city while the data is processed in the cloud
at a centralized server. The widespread use of smart technologies within communities and services has
created the building blocks of a smart city [13]. Application areas within smart cities span from smart
energy grid, smart transportation services, smart water distribution to smart homes [14–18]. A basic
smart city ecosystem is displayed in Figure 1. Sensing as a service is also a vital role that contributes to
a smart city [1,19,20]. The Sensing as a Service (S2aaS) concept allows the acquired and aggregated
data from embedded/built-in (i.e., non-dedicated) sensors in personal devices available to cloud users.
This in turns alleviates companies from the requirement of their own sensing infrastructure. Mobile
Crowdsensing is an emerging non-dedicated sensing method within smart cities sensing that uses the
falls under the Sensing as a service business model. Where people are recruited into sensing campaigns
and are compensated for the data collected by their personal devices [21,22].

Figure 1. Smart City Sensing Ecosystem [23].

Sensing as a service can address many challenges within smart cities [19]. Sensing allows
smart services to self-monitor and react to dynamically changing events. An example of this is
transportation, monitoring roads, bridges and providing the collected data to more efficiently direct
traffic [24]. The data gathered from sensors enables a more efficient resource distribution in a real-time
environment. Sensors are becoming increasingly prevalent and abundant within an urban setting,
this is due to the reduced production cost of high-quality sensors and the wide spread embedded
nature of sensors within smart devices [25]. Various applications can benefit from S2aaS and/or
Mobile Crowdsensing so to help propel the big data trend in which large amounts of quality data to
become available for processing. The data is often processed with machine learning, deep learning
and statistical methods to generate a trend or conclusion [26]. For example, the microphones on
mobile devices can be used to monitor noise levels in communities. Sensing as a Service and Mobile
Crowdsensing is most prevalent in optimizing traffic control in smart cities. Real-time data relating to
traffic congestion, road conditions, parking availability and malfunctioning traffic lights are collected
and processed [27]. The best routes can be sent to each individual driver to reduce congestion and
avoid accidents. Although known obstacles can be shared as they arise, Brisimi et al. [28] proposed a
method of detecting street obstacles that uses smartphone sensing information. This scheme can also
be applied to crowd control within a city, such as optimizing the exit route for crowds leaving a sports
tournament or concert.

Smart city sensing leverage two main types of paradigms with respect to the operational
aspects of sensing systems: (1) dedicated and (2) non-dedicated [23]. Dedicated sensing is when
a network of sensors is deployed specifically and permanently for a particular sensing application [27].



Sensors 2020, 20, 6230 3 of 29

There is a plethora of sensors that are distributed throughout a city, however, to reduce the load
and expand the sensing capabilities, sensing tasks can be subcontracted to non-dedicated sensors.
Although non-dedicated sensing is when mobile sensors are recruited to obtain, process and transmit
data to a centralized server, these sensors are not specifically created and deployed for a sensing
task, therefore they are considered non-dedicated. Sensor-cloud networks are a novel non-dedicated
sensing solution for collaborative sensing tasks in smart cities. A sensor-cloud environment enables the
connection of physical sensor nodes to a cloud platform where multiple organization and users can use
these sensors for their specific applications [29]. These are considered non-dedicated sensors since the
end-user dictates the application and uses of these sensors, while the application changes depending
on the need. It is a pay-per-use model that alleviates the massive initial investment cost from one
organization [30]. An emerging effective non-dedicated paradigm in smart cities sensing is Mobile
Crowdsensing, it is cost effect, highly scalable and has vast mobility. Mobile Crowdsensing allows
users participate in a sensing event by providing data through their sensor-enabled mobile devices [31].
Modern phones contain a wide array of sensors such as magnetometer, gyroscope, accelerometer, GPS,
camera, proximity sensor, microphone, pedometer, ambient light sensor, barometer and thermometer.
The operational differences between the sensing paradigms (i.e., dedicated or non-dedicated) are
apparent in several aspects, such as security, sensing performance and implementation cost. Dedicated
sensing systems often lead to high expenditures for initial deployment and recurring costs for
maintenance, whereas when sensors are not dedicated, it becomes possible to eliminate these upfront
costs through using the participant’s pre-existing devices. The challenges for Mobile Crowdsensing
is the process of recruiting users and incentivizing users [32–34]. The availability of users for a
sensing event is not guaranteed due to the irrational ad-hoc nature of Mobile Crowdsensing networks.
Furthermore, by using user devices for sensing, the users are exposed to potential privacy leaks [35–39].

This survey covers the capabilities and uses of Federated Learning within smart cities sensing
applications. This survey gives a review and a qualitative analysis on how the novel Federated
Learning solution can be integrated into smart city sensing to solve the challenges that are
currently present. There has been surveys that have extensively covered smart cities sensing [40].
Although Federated Learning is an emerging field, there are a few prominent surveys within this
field. The study in [41] covered Federated Learning within mobile edge networks.The authors in [42]
presented a survey on the threats to Federated Learning, focusing on poisoning attacks and inference
attacks. The authors in [43] presented a survey that detailed the current status and challenges
of Federated Learning. This survey compliments the aforementioned surveys by introducing the
Federated Learning methodology for smart cities sensing. Smart cities sensing is a key collaborative
application that can greatly benefit from the Federated Learning methodology.

The rest of the survey is as follows: Section 2 explains the challenges in current smart cities
sensing. Section 3 presents current state-of-the-art Federated Learning solutions. Section 4 shows how
Federated Learning can be incorporated into smart cities sensing. Section 5 covers the open issues
and challenges remaining in smart cities sensing and Federated Learning methodologies. Section 6
concludes the article.

2. Challenges in Smart Cities Sensing

This section covers the major categories that befall smart cities sensing. Habibzadeh et al. [27]
classify smart city sensing under dedicated and non-dedicated sensing with the following descriptions
for each category: dedicated sensing stands for the traditional way of gathering data where specific
sensors are deployed throughout the city to obtain certain sensing data. The range and purpose of
these sensors are fixed, therefore optimal planning for node deployment is vital. This limitation also
applies to non-dedicated solutions such as sensor-cloud networks. However, within the non-dedicated
sensing field, Mobile Crowdsensing that uses sensors present in smart devices to provide sensing
services has proven to show comparative advantages with respect to dedicated sensing and sensor
networks. Mobile Crowdsensing is becoming more prevalent with its advantages of flexible coverage
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areas and low overhead costs. The types of data that can be collected is only limited to the sensors
present in the smart devices. The data generated can be used to analyze a wider range applications,
especially applications related to human behavior since the source of the data is directly from users.
This survey explores opportunities and challenges of integrating federating learning with smart cities
sensing. However, most nodes deployed for dedicated sensing are currently not equipped with
sufficient processing power to support a Federated Learning scenario. Deployment of nodes dedicated
sensing is costly due to the initial investment in sensors, equipping these fixed sensors with processors
that are capable of training large machine learning models would incur tremendous overhead costs.
With the rise in processing power within smart phones and advent of autonomous vehicles, bridging
Federated Learning and non-dedicated sensing is a viable solution.

Mobile Crowdsensing is the most common solution to smart cities non-dedicated sensing. With the
growth of mobile Internet technology and applications, mobile smart devices have been widely
used and greatly popularized [44]. The advent of wireless communication technology and sensor
technology makes the use of mobile sensing devices to build a sensing network in a wider range
and more complex environment a reality [45]. Smart mobile devices have improved greatly in many
areas, such as computing power, storage capacity, and communication capabilities, they also have
integrated rich sensors (such as temperature sensors, gravity sensors, acceleration sensors, and so on)
and the ubiquitous sensing network make ordinary users able to participate in sensing activities that
helps collect the surrounding environmental conditions provides hardware infrastructure support for
ubiquitous depth sensing and computing [46]. However, the allocation of huge sensing tasks and the
coordination of large-scale sensing devices are the challenges and barriers to achieving ubiquitous
depth sensing, as well as computing [47].

Under these circumstances, the proposal and implementation of the Mobile Crowdsensing, which
is a cloud-inspired business model, aims at coupling mobile sensing and crowdsourcing towards
bridging the gap between hardware infrastructure and ubiquitous depth sensing and computing to
form a brand-new IoT sensing model [48], which is a Mobile Crowdsensing network, by coordinating
ordinary users’ mobile intelligent devices and mobile sensing devices to perceive their environment
and process environmental awareness data through collection, fusion, analysis, mining and other
links to restore the user state, situation and environment to collaboratively complete a large sensing
task [49]. The mobile network provides a brand-new solution to the complex ubiquitous depth sensing
problem [50]. It entails a broad range of scenarios and prospects for applications, and there are new
challenges in technology and application research [51].

Mobile Crowdsensing refers to the use of smart mobile devices (e.g., tablets, smart phones, smart
wearables, in-vehicle equipment, etc.) that belong to recruited users for a specific sensing campaign
and mobile sensing devices as basic sensing units, through mobile Internet or wireless network for
conscious or unconscious cooperation to realize the distribution of sensing tasks and the acquisition
and processing of the crowd-sensed data to complete complex sensing tasks in real time [52].

Mobile Crowdsensing is usually composed of two parts: the users and the platform [37]. The users
are individuals that are recruited for the particular sensing campaign. They use sensors present on
smart mobile devices to provide the desired data. The platform is often comprised of a server with data
storage centers. The users interact and communicate through the platform according to predefined
rules set by the service provider and are compensated based on their contributions [53].

2.1. Data Trustworthiness

An efficient Mobile Crowdsensing campaign tightly depends on the truthfulness of the
crowd-sensed data. The reliability of gathered data can heavily impact the analysis outcome [54].
This is often done by malicious users or attackers that want to sway the outcome into a scenario that is
beneficial to them. This can be done by either submitting false data or by distorting the data during the
transmission process. Therefore, ensuring data trustworthiness is a vital step to an efficient and reliable
sensing campaign [55]. Cryptographic technologies such as digital signatures, message authentication
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codes and biometrics are the main methodologies to authenticate the users [56–58]. However, these
methods do not always guarantee that the data provided by the users is authentic. The data division
and other processing measures will bring challenges to the authenticity and integrity of the data [59].
In addition, infrastructure can also be deployed in the sensing area as a reference point and eyewitness
for sensing data to verify the authenticity of the sensing data submitted by users, but this solution
requires additional expensive infrastructure deployment costs [60,61].

2.2. User Incentives

In the Mobile Crowdsensing network, ordinary users are chosen to participate and provide
sensing data to complete the social sensing tasks [32,62,63]. However, users participating in sensing
needs to pay a certain price (such as consumption of resources, disclosure of privacy, etc.) [34].
Without a certain incentive and compensation mechanism, it is difficult to attract a large participant
population to actively participate in large-scale social tasks [33]. Many studies have been proposed
based on this incentive mechanism, such as using game theory to explore user habits and preferences,
and evaluating and improving the relevance of online search engines [64].

Due to the constraints that limit the participation of users and heterogeneity of the crowdsensing
environment affecting the quality of the acquired data, the development of Mobile Crowdsensing
has been seriously affected [65]. In response to this problem, the Mobile Crowdsensing incentive
mechanism adopts appropriate incentives models to encourage and stimulate participants to
participate in sensing tasks [66]. Incentive methods yield different results depending on the
participant groups.

The research of the Mobile Crowdsensing incentive mechanism not only needs to adopt
appropriate incentive methods, but more importantly, through different incentive methods, solve the
core problems faced by both the server platform and the participants in maximizing their respective
utility, so as to achieve the role of incentives [67]. The main task of the sensing task server is
to incentivize more participants under the condition that the payment cost is minimum, or the
payment cost is controllable [68]. Both the participation level of the participants needs to be improved,
and the sensing data of the participants must be high quality and reliable [69]. Privacy and resource
consumption are two major reasons that prevents a capable user from actively participating in a
sensing task [70].

Adopting appropriate incentives can achieve certain incentive effects [71]. However, the study
of incentive mechanisms is not only a study of incentives, but more importantly, through the use of
reasonable incentives and effective key technologies, both the server platform and the participants
maximize the core problems faced by each utility to achieve the role of incentives [72]. These
core issues are mainly concerned with: participation level, completion quality, payment control,
efficiency and energy consumption, privacy and security, and online real-time processing as reported
by Khan et al. [73]. These issues will be elaborated below.

(1) Participation level: The incentive mechanism is used for user recruitment into a sensing
campaign. An increased participation rate improves the success rate for the sensing campaign [74].
At the same time, preserving participants will result in long-term collaborations that is beneficial to
both parties [35]. The server platform not only expects that participants will join the sensing campaigns,
it also expects that any joining participant will remain in the crowdsensing system for an extended
length of time to provide long-term data sensing for the sensing task [75]. In addition, the feedback
effect of the participation level on the incentive mechanism is also a problem worthy of study [76].

(2) Completion quality: The completion of the sensing task is not only dependent on participation
rate, it is also necessary to consider the impact of user location, user behavior, and data quality on the
quality of task completion [77]. Mobile Crowdsensing tasks are mostly position-sensitive [78]. The user
geo-coordinates will impact the overall quality and value of the sensed data [79]. Participants may
intentionally report false data due to their inherent selfishness to affect the perceived data quality [80].
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In addition, the sensitivity of the sensing device itself and the limitations of the participants themselves
will also affect the task completion quality [81].

(3) Payment control: As a server platform, it is often necessary to pay a certain amount of
remuneration to the participants’ perceived data. The payment should be proportional to the quality
of user-provided data [82]. Users should be compensated based on the utility they bring to the sensing
task [83].

(4) Efficiency and energy consumption: Efficiency and energy consumption not only mean that
the server needs an efficient algorithm to process the incentive procedure, but also that the participant
hopes that the incentive procedure can lower the resource usage on the sensing device end [84].
The resource consumption of the sensing device is an important factor that prevents participants from
participating in a sensing campaign [85]. The mechanism needs to minimize the consumption of these
resources [86]. Efficient algorithms are an indispensable part of the incentive mechanism to improve
efficiency and reduce running time [87].

(5) Privacy and security: This category includes the privacy concerns of users and the security
measures to protect the data in motion and at rest in the server [88]. Participants do not want to
disclose personal privacy data when uploading data in sensing tasks, especially location-sensitive
Mobile Crowdsensing [89]. Participants may be dishonest Therefore, the uploaded false data poses
data security problems for the server [90]. In addition, malicious attacks by malicious users or other
entities also need to be considered [91].

(6) Online real time: According to the difference in processing times, the incentives can be
processed either online or offline [92]. Offline processing refers to that the server platform needs to
make decisions about the allocation of submitted sensing tasks depending on the information gathered
from the individuals in a participant pool [93]. The dynamic random participation of participants and
the requirement for real-time feedback require an online mechanism to motivate participants in real
time [94].

2.3. Data Quality Management

The Mobile Crowdsensing network uses the user’s existing equipment for sensing, therefore the
sensing data is possibly neither accurate nor reliable [95]. Although it has benefits of low cost, large
sensing scale and fine granularity, it also brings a huge challenge in terms of data sensing quality
management [96]. If these inaccurate and unreliable sensing data are not processed, it would be
difficult to directly use those data in sensing applications [97]. Optimal data quality management is
needed for a successful group-aware network. In other words, in a sensing network, data acquisition
is easier however quality management for the acquired data is difficult [98]. The key lies in solving the
problem of inaccuracy and unreliability of the perceived data, i.e., data sensing quality management.
In traditional sensor networks, because sensors can be calibrated before deployment or their sensing
tolerances are known, their data sensing quality management is easier, and the key lies in data
acquisition, such as how sensors reduce sensing energy consumption, and reliably transfer data to the
center [99].

The sources of sensing data are usually different users and sensors, which have the characteristics
of multiple modalities and strong correlations. It is necessary to intelligently analyze and explore these
data information to find valuable information and make full use of its value, realize the qualitative
change from data to information and finally to knowledge [100]. In the exploration of the value
of data information, designing the storage and processing of big data, data quality management,
and multi-modal data exploration and other aspects of technology is an important challenge [101].

2.4. Node Deployment

The complexity and variability of IoT environments present grand challenges for node deployment
in the sensing layer. This directly impacts the data collection and analysis process due since the issues
will be stemmed from the data source.
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Environmental impacts can affect the deterioration of sensor components and thus affect the
sensing capabilities of those sensors. Interference might be present in the surrounding areas and cause
communication loss. These factors cause unavoidable loss that in turn lead to incomplete data [102].

Another major issue is the coverage area of the deployed nodes. The coverage area is predefined
in dedicated sensors; therefore, this metric can be optimized for certain scenarios. It cannot be changed,
whereas sensing requirements often change over time. Mobile Crowdsensing sensing nodes are often
mobile and can adapt depending on the sensing task. However, the population and device density
and participation rate are all factors that can hinder the sensing campaign. Mobile Crowdsensing is
completely reliant on the crowd availability. This means that Mobile Crowdsensing sensors performs
best in well populated urban metropolitan districts where there is an ample amount of people with
smart devices to achieve a wide coverage [103].

2.5. Energy Consumption

Resource consumption is still a major challenge in mobile devices during sensing campaigns.
These resources include computing, communication and energy resources [104]. Optimizing resource
allocation is a key step to improving efficiency in sensing campaigns [105]. However, dynamically
allocating resources with for different devices is a difficult task. Oftentimes multiple categories of
sensing data are used for one sensing goal, this adds more layers of complexity in the balance of
resource allocation. An example of this is when GPS, Wi-Fi and cellular proximity is used to mine
positional data. In this case, GPS data consumes the most energy but provides the highest accuracy,
a balance between data quality and energy consumption must be evaluated [106].

In the process of continuous application of sensor networks, it is paramount to overcome problems
such as node energy, bandwidth and resource constraints in computing, etc., in order to effectively
realize its practicality [107]. With the continuous change of time, the quantity of users and the
availability of sensors have changed. It is difficult to carry out modeling and prediction work on energy
and bandwidth requirements, and it is difficult to complete the sensing task effectively. When selecting
an effective subset of users, you need to think about the choice [108]. In the face of a large user pool
with different sensing abilities, a more targeted selection methodology needs to be selected. In the case
of resource constraints, rationalize the sensing and communication resources [109].

The availability of sensors and sensing tasks changes overtime, therefore developing a model to
accurately predict energy consumption with the wide range of unknown and unpredictable parameters
is difficult [110].

In addition, many Mobile Crowdsensing applications need to adopt continuous data collection
methods to transmit data to the corresponding data centers. The connection between mobile cellular
networks and the Internet performs the sensing data transmission, resulting in increased data
traffic [111]. Mobile cellular networks bring great pressure. A more effective data transmission
method is strongly desired, for example, according to the short-distance wireless communication
method, the use of user contact or hotspot sharing to achieve data transmission [112].

2.6. User Privacy Protection

Preserving the privacy for participating users in Mobile Crowdsensing campaigns is a top priority
for the server. First, a user mobile device can contain sensitive personal data. Secondly, personal
information can be concluded by analyzing the data provided by the user. For example, by collecting
sensory data related to the user location on the device (such as GPS, electronic compass, magnetic
field sensor, etc.), the user’s precise location information can be obtained [36]. Through continued
monitoring, the user’s home and work address can be pin pointed and their daily routine can be
cataloged [113]. Sensory data can be mined from motion sensors that can be used to deduct the living
habits and health information related to a certain user.

Another scenario is when motion sensor data is mined from the user, this information can be
used to generate a portfolio of the user’s daily routine and health information. With the combination
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of environmental sensory data, it would be possible to track and predict the user location at any
given time [114]. By collecting the sensory data of the biometric sensor, you can discover the user’s
various biometric features, such as sound, images, fingerprints, basic physiological characteristics,
and other highly sensitive privacy information. In addition, collecting the daily use data of users can
also mine the user’s usage habits, hobbies and behavior characteristics and other deep-level private
information [115]. Mobile Crowdsensing enables the optimization of many control sectors, such as
pollution, public transportation, traffic congestion, road conditions, etc. However, if sensory data
is leaked during the transmission process, it will threaten the privacy of vast amounts of user [116].
Therefore, having appropriate measures to ensure user privacy is preserved is vital in the success of
sensing tasks.

3. Review of Federated Learning Solutions

In 2016, Google first proposed the concept of Federated Learning, it is a methodology that is often
leveraged for joint training of data in multiple edge devices (such as mobile phones) for centralized
model training, and is used in scenarios such as input method improvement [117]. As a new generation
of artificial intelligence technology, Federated Learning is penetrating the key difficulties of commercial
AI application bottlenecks by solving problems such as data privacy and lack of data and it is reshaping
the financial, medical, and urban security fields [43].

In modern times, most enterprises have difficulties in obtaining large quantities of quality data
for AI model training. At the same time, the regulatory environment is also gradually strengthening
data protection, and relevant policies are being introduced continuously [118]. The data owned by
commercial companies often have huge potential value. Often these institutions will not provide their
own data to other companies, resulting in data often appearing in the form of islands. Mobile phones
and wearable devices are very common data generation devices in modern times [119], which generate
huge amounts of data in various forms every day. Considering the requirements of computing power,
data transmission, and personal privacy, system deployments are increasingly inclined to store data
locally, and model calculations are performed by edge devices [120]. The goal is to design a machine
learning framework that meets data privacy, security and regulatory requirements so that artificial
intelligence systems can leverage the use of their data more efficiently and accurately [121].

Federated Learning is essentially a distributed machine learning technology or machine learning
framework. The formal definition of Federated Learning can be defined as: Joint training of machine
learning models with distributed devices and local data under federation. Federated Learning
requires learning a global statistical model from the massive information stored in millions of remote
devices [117]. Federated Learning methodologies enables machine learning models to be trained
effectively while ensuring legal compliance by preserving data privacy of the participants. Federated
Learning defines a machine learning framework under a virtual model, which is designed to solve the
problem of different data owners collaborating without exchanging data [122]. The virtual model is
the best model for all parties to aggregate data together, and their respective regions serve local targets
according to the model. Federated Learning requires that the modeling result should be infinitely close
to the traditional model, i.e., the data of multiple data owners are gathered in one place for modeling
results [123]. Under the federated mechanism, each participant has the same identity and status and
can establish a shared data strategy. Since the data does not transfer, it does not reveal user privacy or
affect data specifications [124].

There are three major components of federated learning: data sources, Federated Learning
systems, and users. The relationship between the three is shown in the Figure 2. Under the Federated
Learning system, each data source performs data preprocessing, then jointly establishes and learns the
model, and feeds back the output results to the client. The central server first saves the initial data and
distributes it to the participating users [125]. Then the participants uses their own collected local data
to train a local model. The parameters of the local model are then transmitted to the central server,
while the participating user’s local data remain on their devices [41]. The central server then aggregates



Sensors 2020, 20, 6230 9 of 29

the parameters of the uploaded local models to build a global model. The updated global model would
then be distributed back to the local users for additional training with local data. This procedure can
be re-run until a desired outcome is seen, often when the global model shows a clear convergence.
Each user is treated equally without bias in this process [126].

Federated Learning effectively solves the problem of common use of data by two or more
data-using entities (clients) without contributing data, and solves the problem of data islands.
In addition, under the premise that the data characteristics of each client are aligned, the global model
of Federated Learning can obtain the same modeling effect as the centralized storage of data [127].

Figure 2. Basic Federated Learning Architecture: Users use local data to train local models, the local
models are used to update the global model in the base station. The aggregated global model is passed
to the local models for further training. These steps are repeated until the global model converges.

Federated Learning differs from the traditional distributed machine learning due to the
participating devices and dataset properties. In traditional distributed machine learning, the edge
nodes are all of equal processing power and the data split is equally divided and often found in
Independent and Identically distributed (IID) format whereas in Federated Learning, data is often
found in non-IID format, where the data varies in quality, diversity and quantity This is due to the
heterogeneous nature of participating hardware devices and variability of using user local data for
training [128].

According to the distribution of data sources of the participating parties, Federated Learning can
often be split into three types, they are specifically horizontal, vertical and transfer Federated Learning.

Horizontal Federated Learning: When the user characteristics of the two data sets overlap more
and the user overlaps less, the dataset is divided horizontally along the user dimension the part of the
data that contains the same user characteristics but not the same users is taken out [129].

• Step 1: Each participant downloads the latest model from server A;
• Step 2: Each participant trains the model using local data, uploads the encrypted gradient to

server A, and server A aggregates the gradient update model parameters of each user;
• Step 3: Server A returns the updated model to each participant;
• Step 4: Each participant updates their own model.

In traditional machine learning, the data and training are all done in a centralized location and the
data is often obtained from data centers. Horizontal Federated Learning can be related to distributed
machine learning. Where the difference is that the data used is local device data instead of a distributed
partition of data owned by the server. Each machine in Federated Learning obtains the initial global
model from the server, training is then done on each device’s local data (followed by the model
parameters of the local model) is shared with the server to perform any required updates in the global
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model. The server aggregates the local model parameters sent by each machine to obtain the global
model, the updated global model is then sent back to the participating users and these steps are re-run
until a global model convergence is present [130].

In this process, each machine has the same and complete model, and the machines do not
communicate and do not depend on each other. During the prediction, each machine can also
independently predict. This process can be viewed as a sample-based distributed model training [131].
Google initially adopted the horizontal federated method to solve the issue of locally updating models
by end users.

The joint multi-party training methodology in horizontal Federated Learning stems from
distributed machine learning. Distributed machine learning represents a distributed split of training
data, devices and completion of training [132]. The parameter server is adopted from distributed
machine learning, it accelerates the training process by storing data on working nodes while allocating
computing resources through the centralized scheduling node [133]. Although the working node
becomes the participating users, they have ownership over local data and is independent to the server.
Compared to the parameter server where the central node has the highest authority, in Federated
Learning the working nodes has the freedom to participate, this adds layers of complexity when it
comes to scheduling an optimal learning environment [134]. Horizontal Federated Learning is the
strongest candidate for wide adoption in smart cities crowdsensing due to the nature of selective user
selection for specific sensing data in Mobile Crowdsensing. Oftentimes, the data would share the same
user space and differentiate in feature space. Take smart healthcare as an example: in order to share the
same user space, the server would recruit users with the same health illnesses; however, the collected
local data would have different features [131].

Vertical Federated Learning: this is often used when there is an increased user space overlap
in datasets and a decreased feature space overlap. The data is then divided in the vertical direction.
Vertical Federated Learning allows the aggregation of these split features without interfering with
the user privacy requirements [21]. At present, machine learning models are all built under the
framework of a vertical Federated Learning system [135]. Examples include but are not limited to
logistic regression and decision tree models that are built under the vertical Federated Learning
framework. There are two learning steps, which are shown in the Figure 3.

Figure 3. Horizontal, Vertical and Transfer Federated Learning.
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Initially, the encrypted samples are aligned at the system level. This is to ensure that user privacy
is not leaked within the enterprise sensing level. The samples are then used for training an encrypted
model. The collaborator C sends the public key to A and B to encrypt the data to be transmitted;
while A and B train their respective models with their local data, an intermediate step of exchanging
gradients and losses occurs between A and B; the gradients are then calculated again after the exchange
as well as having an additional mask added, both gradients are then sent to C. C then proceeds to
decrypt the received gradients and returns it back to A and B. This is followed by the removal of the
mask and updating of the model by A and B [117].

During this process, the participants do not communicate with each other therefore they are
unaware of the data features of other participants. After the model is trained, only the portion of the
model supported by their own model parameters are returned to them. Since each participant can
only obtain the model parameters related to himself, both parties need to cooperate in the prediction.
The result of the joint modeling is that both parties obtain data protection and jointly improve the
model effect without the loss of model [136].

Vertical Federated Learning can be benefited by the industry or governments more than the
masses. A major application for vertical federated learning would be in smart retail or smart finance
sector. This is because the data collected from these sectors is often used to profile consumers.
For example, the bank may have information relating to consumer spending habits, but a retailer may
have information on consumer personal preferences in terms item selection. The bank and retailer
cover a large user space that intersect, each providing different features [117].

Federated transfer learning is often used for transfer learning models with deep convolutions
neural networks. Using pre-trained models on generalized datasets as a basis and training the scarce
amount of data to orient the base model for a specific application. The core of transfer learning is to find
the similarity between the source domain and the target domain [137]. The goal of transfer learning is
to build effective application-specific models for cases with data is scarce. This is accomplished through
leveraging models that are already fully trained and effective for a source domain that is related to
the target domain. Then using the available data, to orient the model for use in the target domain.
Applications of federated transfer learning would be teaching autonomous vehicles to recognize
new signs and road conditions through deep neural networks. Figure 3 shows a representation of
horizontal, vertical and federated transfer learning.

A standardized Federated Learning protocol was introduced by Bonawitz et al. [138] to promote
the scalability of Federated Learning algorithms. This protocol is repeated during each round of
training and consists of 3 steps each time.

• Selection: At the beginning of each training round, a predefined subset of participating users is
selected. This selection method can be adjusted or calibrated based on the server requirements or
with a custom selection methodology.

• Configuration: The server uses the selected aggregation method and sends the training
parameters and model configuration to the selected participants. The participants can proceed to
model training.

• Reporting: The participants have trained their models and update the server with their parameters
and the server aggregates the updates.

Nishio et al. [139] proposed FedCS, a Federated Learning protocol to improve client selection
under heterogeneous device scenarios. The steps of FedCS consists of initialization, resource request,
client selection, global model distribution, scheduled update and upload of local model parameters,
local model aggregation steps followed by iteration of steps from resource request to local model
aggregation. The FedCS protocol enables accelerated federated training process by allowing the server
to receive more updates and aggregate more models within the same time frame due to selecting
clients based on their resource constraints.
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FedGRU was proposed in [140] or small-scale Federated Learning applications, specifically in joint
traffic control where private information is often not shared between organizations. The initial global
model is pre-trained using public datasets that applies to the selected application domain. The global
model is distributed to each participant and trained with local data, and each participant uploads
their trained model parameters through encrypted parameters. Finally, the cloud then aggregates all
participant models for a new global model followed by distributing it back to each participant.

3.1. Aggregation Methods

The Federated Average (FedAvg) [141] algorithm (illustrated in Figure 4) is an effective yet simple
algorithm that is most commonly used for federated aggregation. The FedAvg aggregation consists of
equal distribution of model parameters for every local model.

For FedAvg, the gradients of all participants St is initialized to wo. Each round each, local model
is trained on its local data and updates the model, given by wt ← wt − η5 `(w; b) The gradients of the
local models are given by wt. The gradients are aggregated by the server each round, the updates can
be categorized as wt+1 ← ∑K

k=1
nk
n wk

t+1 The parameters are averaged between all uploaded models.

Figure 4. FedAvg algorithm proposed by McMahan et al. [142] that is widely used as a
standard algorithm.

The study in [143] propose FedProx to improve upon FedAvg. FedProx tackles the problem of
heterogeneity within the Federated Learning environment. This includes the hardware and software
variability in participating mobile devices and the statistical heterogeneity by the non-identically
distributed data across devices. This is done by introducing a tunable proximal parameter to ensure a
better convergence. It addresses statistical heterogeneity by restricting the impact of each local update
to the initial global model and addresses system heterogeneity by safely incorporating various degrees
of local work.

The study in [144] propose Loss-based Adaptive Boosting (LoAdaBoost) FedAvg to further
improve upon FedAvg. This is done so by comparing the loss of the local model in the current epoch
to the median loss of the previous epoch. The local model is retrained if it is higher than the previous
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median loss. A faster convergence is observed with this method, and thus the communication costs
can be reduced.

3.2. Reputation Models to Ensure Data Trustworthiness

Reputation models have been proposed by [145,146] to ensure reliability and trustworthiness of
mobile devices.

The study in [145,147] uses blockchain and multi-weight subjective logic to formulate reputation
scores; the reputation is calculated based on previous interactions and opinions of other task publishers.
This reputation is then stored within an open-access consortium blockchain. A reputation threshold
is set during the user selection, therefore lower reputation users will not be selected. After a
model is trained, the performance of the local device is evaluated, using the Reject on Negative
Impact (RONI) [148] method for Independent and Identically Distribute (IID) data. As well as using
the FoolsGold [149] scheme for non-IID data. RONI detects poisoning attacks by comparing the
performance of the local update to a preset update threshold. If the model does not improve over the
preset threshold then it will be rejected for global model aggregation. The FoolsGold scheme looks
at the gradient diversity of the local updates, if a user repeatedly uploads similar gradients every
iteration then it deemed unreliable.

The study in [146] formulates the reputation score of a user by comparing the testing accuracy
in three distinct ways. The test accuracy of the local model is compared to the average test accuracy
of that epoch, the previous global model test accuracy and the temporary global model test accuracy.
A temporary global model is aggregated each epoch to evaluate the capabilities of the combined
training of the current epoch, the previous global model is used as a comparison to see how much the
local models have improved upon the last epoch. The average test accuracy is used to measure how
well the local model is performing compared to its peers. A reputation threshold is set for selecting
suitable users to participate in the Federated Learning training. If a user falls below the threshold a set
amount of times they will be eliminated from the Federated Learning event.

3.3. Privacy Preservation

Privacy Preservation is a key issue in Mobile Crowdsensing, the Federated Learning methodology
helps prevent raw data from being sent to the centralized server; however, there are other privacy
concerns within the Federated Learning framework and improvements that can be built and
incorporated to the Federated framework [150].

Federated Learning methods can leverage Differential Privacy to further prevent information
leakage. Oftentimes differential privacy schemes face a challenge to address a trade-off between
two objectives: convergence rate and privacy. With this in mind, the authors in [41] propose noising
before model aggregation Federated Learning (NbAFL) which satisfies differential privacy by varying
protection levels with variances of artificial noise. This method shows that with as the protection level
increases the convergence performance decreases, and where an increasing number of clients can
improve convergence rate when given a constant protection level.

Liu et al. [150] focused on the improve privacy preservation when sharing model updates without
increasing communication cost. They achieved this by proposing sketching algorithms to obfuscate
the original data by using independent hash functions. The identities of the user can be concealed
during each round of updates due to each user having their own hash indices and seeds.

Hao et al. [151] propose a Privacy Enhanced Federated Learning (PEFL) scheme that uses
differential privacy by adding noise according to Gaussian distribution to local models. The perturbed
gradients vector of the users is then encrypted into the Brakerski Gentry Vaikuntanathan (BGV)
encrypted internal ciphertext. It is then integrated into an augmented learning with error (A-LWE)
external ciphertext for secure aggregation. The internal ciphertexts are first all aggregated, then the
server decrypts the external ciphertexts. The internal ciphertexts are summed, the aggregated value is
easily decrypted by the server while withholding the privacy of the user.
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3.4. BlockChain

Blockchain is often used to preserve privacy in distributed computing environments. Blockchain
has been widely used in Federated Learning schemes.

Awan et al. [152] aim for user privacy preservation, and to do so they propose a method that
uses the immutability and decentralized trust properties of blockchain for a secure aggregation
process. Their model relies on homomorphic encryption the combined with re-encryption, blockchain
and verification. The server generates a pair of private and public task keys while the aggregator
generates a pair of private and public batch keys, the public keys are distributed to participating users.
The aggregator fuses the updates received from the users, and the aggregated updates are re-encrypted,
in which the server would only be able to get the aggregated results. Blockchain also enables easy
tracking of client contributions, the contribution can be evaluated by evaluating the global model
before and after aggregation.

Lu et al. [153] propose Blockchain, differential privacy with Federated Learning to solve the issue
of data islands for industrial IoT applications. For differential privacy, they added noise at the initial
stage onto the original data. This may affect the accuracy of the trained models compared to adding
noise to the gradients.

Lyu et al. [154] consider fairness in their blockchain-enabled Federated Learning scheme. A local
credibility mechanism is used to promote evaluation between users to ensure fairness. Another
mechanism to guarantee fairness is that the global server distributes different versions of the global
model to the participants based on their contributions. For privacy preservation the authors propose a
layered encryption scheme. Blockchain 2.0 is used to store the credibility values of the users, these
values are relative to each user’s contributions.

Zhao et al. [155] incorporates blockchain-based Inter-Planetary File System (IPFS) with differential
privacy to improve privacy of Federated Learning. Noise is added to the extracted features to ensure
differential privacy. Local model updates are sent to the IPFS. IPFS is a file system that allows edge
devices to communicate with the same file. Instead of storing actual files on the IPFS, hashes of data
location on the blockchain is stored. The immutable nature of blockchains allow for transparency in
terms of tracking the model updates from malicious users.

An overview of Research covered within this section can be seen in Table 1.

Table 1. Overview of Federated Learning Research covered with key ideas, methodologies, open issues
and opportunities for future research.

Area Ref. Motivation and Key Idea Proposed Approach Open Issues and Further
Opportunities

Protocol

[138] Scalable production system for
Federated Learning

Standard protocol as a basis for
Federated Learning

Need for optimization for
application-specific scenarios

[139] Promote client selection under
heterogeneous resource scenarios

FedCS protocol to select users based
on their resource availability

Relies on the truthfulness of user
resource availability submissions.

[140] Federated Learning for traffic
prediction models

Suitable protocol for small-scale
Federated Learning enabled traffic
control

Extension to larger scale of recruited
clients.

Aggregation

[141] A standard aggregation method
FedAvg algorithm to aggregate the
average model parameters of
updates

An alternative to equally weighing
all local model updates during
aggregation.

[143] Optimize Federated Learning in
heterogeneous networks

Proximal parameter to limit the
impact of variable updates allowing
partial work to be done

Solutions for the cases where not all
updates are of positive contribution

[144] Optimize Federated Learning
through data distribution

Loss-based Adaptive Boosting to
compare local model losses prior to
aggregation

Extensions to consider
heterogeneous contribution
scenarios during aggregation

Reputation Models

[145] Incentive to promote reliable
Federated Learning

Multi-weight subjective logic to
formulate reputation scores

Advanced reputation scores to
directly reflect performance of users

[146] Enhanced client selection to
improve model performance

Local model performance metrics to
formulate reputation scores

Minimum computational overhead
for assessment of reputation scores
for every user

[147] Reputation-awareness Interaction records to generate
reputation opinions

Reputation scores to reflect
performance of users directly
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Table 1. Cont.

Area Ref. Motivation and Key Idea Proposed Approach Open Issues and Further
Opportunities

Differential Privacy

[150] Enhanced privacy preservation
through sketching

Obfuscation of the original data to
achieve differential privacy Performance versus privacy gain

[41] Differential privacy in Federated
Learning Noise before model aggregation Considering varied size and

distribution of user data

[151]
Enhanced privacy and efficiency of
Federated Learning in industrial AI
applications

Add noise according to Gaussian
distribution to local models

Extensive analyses on
high-dimensional data

BlockChain

[152] Accountable Federated Learning Combine aggregator and blockchain
to preserve privacy of users

Fairness assurance in participant
rewarding

[153] Enhanced privacy for Federated
Learning

Noise at the initial stage onto the
original data, and use BlockChain to
facilitate the Federated Learning
process

Tackle potential performance issues
due to noising too early

[154] Improved fairness and privacy in
Federated Learning

Scale rewards with respect to
participant contribution Extension to non-IID scenarios

[155]
Privacy Preserving Federated
Learning for industrial IoT
applications

Use blockchain with Inter-Planetary
File System (IPFS) and noise to local
model features

Extension to non-IID data or
heterogeneous device scenarios

4. Opportunities for Federated Learning in Smart Cities Sensing

Federated Learning can benefit smart cities sensing in multiple aspects [32]. This is most evident
when incorporating Federated Learning methodologies for Mobile Crowdsensing tasks, by bridging
the gap between data sensing machine learning model training while preserving user privacy. It is
possible to use Federated Learning with dedicated smart city sensors; however, oftentimes they do
not have the processing power to compute advanced deep learning and machine learning models.
The overhead cost of redeploying existing dedicated sensors and manufacturing cost of producing
dedicated sensors with higher processing capabilities would be expensive and inefficient. However,
in Mobile Crowdsensing the use of personal smart devices that have enough processing capabilities are
a prime candidate to integrate with Federated Learning. Along with the growth in smart technologies,
more advanced Federated Learning models can be used. This section will go in detail in terms of how
Federated Learning can address certain challenges within Mobile Crowdsensing, this includes data
privacy, communication costs and training efficiency.

The benefit of the Federated Learning can be seen in two major aspects. First, Federated Learning
helps preserve the security of the user by never uploading the raw collected data. Secondly, it is possible
to assess the quality of the user’s collected data by testing the local models prior to aggregation.

4.1. User Incentives

The additional layers of privacy preservation that is present in Federated Learning schemes will
better facilitate user participation.

By having a direct way to measure each individual user’s utility and contribution to the federated
sensing campaign, better compensation can be made to the participating users. This will deter users
that do not have the capability to provide quality local data.

In Federated Learning, only the trained model parameters need to be uploaded to a server,
this represents less bandwidth usage for the user compared to traditional Mobile Crowdsensing.
This helps relieve users of high bandwidth costs, which in return incentivizes their participation.

The server in Federated Learning gains a quantifiable revenue from the local data and training
progress that the recruited users contribute. Rewarding the participants with viable payout for their
contributions is the basis of incentive mechanisms in Federated Learning schemes. The user incentive
scheme leverages game theory [117] and contract theory [145]. Games such as the coalition game
and labor union game can be used where marginal contribution of the participants are used to gauge
pay-offs. Rewards such as reputation, lotteries and auctions can be used as incentive mechanisms.
The study in [156] proposes a pay-off sharing incentive scheme that focuses on fairness between
participants. Their achieved fairness by modeling the contribution, regret distribution and expectation
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fairness criteria. Their goal is to concurrently maximize the total utility of the platform by ensuring
maximum fairness among participant contributions. The study in [145] proposes a method that
uses the junctions of contract theory with reputation scores where higher reputation users would be
motivated to users with high-quality data to participate. The authors in [157] propose an incentive
method that scores models based on their performance results.

Federated Learning incentive models inherit the advantages of Mobile Crowdsensing incentive
methods through the capability of more accurately gauging the utility of a participant. This is due to
evaluation methods that can directly measure the performance of their contributed model, evaluating
a machine learning model is easier and more concrete than evaluating the contribution of raw sensing
data [158].

Federated Learning also allows a user to obtain more payout through the same collected sensing
data. Thus, since there will be more computational overhead, a higher payout should be given.
Therefore, at the cost of more inconvenience, the users would be able to yield a higher payout
by providing the same amount of data. This combined with the security benefits that Federated
Learning presents would help incentivize users to participate in Federated Learning-based sensing
applications [156].

4.2. Data Quality

Mobile Crowdsensing allows users to participate in a sensing event for a particular goal. However,
oftentimes, a challenge is to determine the quality of data that each user provides [95]. Integration
of Federated Learning-based approaches enables comparison of the loss value or test accuracy of
the trained local model to check the viability of the provided user data. The Federated Learning
methodology will be able to provide a direct analysis of each user’s data quality. The organizers of the
sensing campaign can a predetermined desired output as the model test set and at each epoch the local
model performance is tested to see if an improvement is present. If an improvement is seen then the
local model is accepted for global aggregation.

This in turn reduces the risk of compensating users that intentionally provide poor data or has
device-side issues. This method also directly addresses the device heterogeneity problem within
Mobile Crowdsensing, where data is gathered from a multitude of different sensors and devices.

4.3. Data Privacy Protection

The ever-increasing stringent Data privacy laws are a key challenge in Mobile Crowdsensing, it is
preventing the user recruitment and inhibiting the collection of certain types of sensed data. By never
uploading the raw collected data of the users and only uploading the trained local model parameters,
the user data is protected can be further protected.

Federated Learning methodologies can incorporate Blockchain and differential privacy to better
improve the user privacy [155]. By incorporating noise, the output of the local models will not change
the model inherently but will improve the privacy guarantee. The Global model convergence is
reduced as privacy is increased with differential privacy. Blockchain is a popular privacy preserving
methodology for training neural network models in a distributed environment.

4.4. Server Side Overhead

In traditional Mobile Crowdsensing schemes the server must overlook the transmission of data,
storage of data and data preprocessing. Mobile Crowdsensing that is used for model training would
also need to train the model in a centralized location. These processes incur large overhead costs and
maintenance, reducing those requirements would lower the threshold for smart city sensing campaigns.

Mobile Crowdsensing incurs large communication costs with the transfer of raw data into the
server. This places a burden on the server itself to process this data and takes a large amount of
bandwidth from the users as well. The user resources in terms of bandwidth can be reduced whereas
the trade-off is the energy consumption of the devices are increased. In a Federated Learning scheme,



Sensors 2020, 20, 6230 17 of 29

the parameter set of the model is transferred to the server as opposed to uploading a bulk of raw
data. Lin et al. [159] propose Deep Gradient Compression and it yielded a communication bandwidth
reduction in the order of two magnitudes for complex models.

Training complex models is time consuming and requires vast amount of computing power,
by leveraging a decentralized approach it will accelerate the training process while providing a more
generalized and rich data pool.

4.5. Federated Learning Applications

A few examples of Federated Learning applications that contributes to smart city sensing are
covered in this section.

4.5.1. Federated Visual Security Sensing

Smart security is an emerging field that is part of the smart cities phenomenon. Traditionally,
security relies on the combination cameras, monitoring rooms and personnel to manually detect
possible threats. Definitions of abnormalities depend on predefined set of rules. This type of threat
detection is labor-intensive and inefficient. Although large amount of data is collected through access
cards, cameras, sensors, etc., they are often not used together. The value of the individual data islands
is not fully used [160]. Therefore, smart security solutions are highly desired [161].

AI-based model can be used for early warning, real-time high-precision location determination,
movement recognition and analysis behavior, to predict travel trajectory and user abnormal behavior,
thereby improving community safety and community management efficiency [162]. Federated
Learning can be established to train multi-community data for security models while preserving
the privacy between communities [163].

Based on machine learning, smart security can perform post event analysis and self-learning,
constantly accumulating experience, and continuously improve pre-warning capabilities. Federated
Learning offers a machine learning training scheme that allows the use of the large amounts of collected
data in daily applications [163].

4.5.2. Federated Autonomous Vehicles

Navigating the dynamically changing, complex and diverse roads is a difficult task for
autonomous vehicles [164]. Accidents are highly probable due to the sudden events caused by
pedestrians or other vehicles. Industries require large number of drivers for long distance delivery
services as a part of the supply chain every year [165]. Autonomous vehicles will improve efficiency
by enabling continuous operation without the need for human intervention.

The development of Internet of Vehicles (IoV) and Road Networking technologies will propel
autonomous vehicles to become a technological direction with extremely high social value and
economic value [166]. Horizontal Federated Learning can be introduced to contribute to more robust
machine learning models by fusing sensor information such as cameras, ultrasonic sensors, millimeter
wave radar, LiDAR of different vehicles [167]. Vehicular sensing networks are an integral role in
smart cities as they provide a vast amount of sensory information and can directly impact smart traffic
control [168].

Autonomous vehicles should interact with the IoV, vehicle-road collaboration, and even the entire
transportation system to create a better driving environment [169]. Interactive learning should take
place between the vehicle and the system environment so that it can assist with other city sensing
applications, such as city traffic lights, cameras and road side units through vertical Federated Learning
to better integrate information from different sources under privacy protection.

Communication between vehicles is vitally important. Samarakoon et al. [170] propose a
Federated Learning-based approach to achieve ultra-reliable low latency communications in vehicles.
Lyapunov optimization is used to calculate the joint power and resource allocations to enable low
latency communication for vehicular users.
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Sensing, decision-making and control are the three core modules of autonomous vehicles.
Among them, the sensing of sensor information input such as LiDAR, camera (monocular, binocular,
surround-view camera) provides input for the planning stage [171]. At the same time, because the
vehicle will generate massive sensory data during the driving process, the original data may involve
privacy issues, Federated Learning can be leveraged for real-time adjustments to the AI-based models
for dynamic adaptability without compromising the privacy of the data owner.

4.5.3. Federated Aided Diagnosis

Artificial intelligence applications in clinical research are enabled by the digital transformation
of medical treatment and clinical information [172]. Medical information is intertwined tightly with
patient privacy, and protecting this highly sensitive information is the joint responsibility of all parties
including hospitals, artificial intelligence companies and relevant regulatory agencies.

Smart healthcare that leverages Federated Learning can equalize the performance discrepancies
between hospitals and provide high-quality test results. By assisting doctors in diagnosis, the burden
on the medical system can be reduced [173]. Through standardized data, a horizontal Federated
Learning model can be used to ensure that patient data is only kept in the hospital of origin [117].
The Federated Learning model allows for continuous improvements as more medical data is added.

The study in [174] used electronic health records to train an AI model for predicting cardiac events.
Smart healthcare based on Federated Learning will empower clinical diagnosis and other subdivisions
on the basis of protecting patient privacy, and will promote high-quality medical resources at extremely
low cost [175].

5. Open Issues, Related Challenges and Opportunities

Figure 5 illustrates our proposed taxonomy of Federated Learning. The major steps in a Federated
Learning scheme is user recruitment, local training and uploading of model parameters, aggregation of
local models and the privacy preservation mechanics that is used throughout to ensure that the privacy
of data is preserved. The blocks highlight in red are the fields that still need further investigation.
Coverage area is very crucial in sensing tasks although currently researchers have not focused on the
challenges with regards to sensing coverage in Federated Learning schemes. Aggregation methods
that can further optimize federated learning performance is still an area that still requires further
research, currently most Federated Learning schemes use the FedAvg algorithm for model aggregation;
however, application-specific aggregation methodologies can be developed. The energy consumption
and heterogenous nature of participating device computational power and their effects on Federated
Learning schemes is also an area that offers opportunities for future research.

Figure 5. Proposed Taxonomy for Federated Learning.
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This section covers the challenges and open issues regarding incorporating Federated Learning
into smart city sensing.

5.1. Energy Consumption

In Mobile Crowdsensing, energy consumption is a major issue, and it is a metric that is used for
calculating the user compensation. By using Federated Learning, the utility of the user can be better
gauged; however, Federated Learning consumes much more of the users battery. Depending on the
model that is being trained and the amount of local data battery drain can be significant enough to
deter users from participating. A proper method to optimize battery usage during Federated Learning
is desired, as well as a compensation scheme that is scalable depending on the Federated Learning
sensing campaign.

Previous studies have tackled communication challenges regarding Federated Learning [176,177].
However, they often do not take into account the energy consumption of the participating users.
Within a fixed training time, unavailability due to outage decreases as energy consumption decreases.
Similarly, in the case of a fixed energy consumption guideline, the amount of communication rounds
is proportional to outage probability. Therefore, the problem can be oriented by given an energy
consumption threshold, optimize the learning performance, or vice versa [178]. The study in [176]
optimized energy consumption based on the communication time given to each user as well as the
selection of computation parameters. This methodology assumes a strongly convex loss function is
present, which is not always the case. The study in [179] optimizes energy consumption as a whole
through an adaptive method that gives more bandwidth to users with less computation power and
gives priority to participants with strong computation power.

There are many incentive methodologies that have been developed for Mobile Crowdsensing
that considers energy consumption. We envision the adaptation of Mobile Crowdsensing incentive
methodologies to include the increased energy consumption to appropriately compensate and
incentivize participants.

5.2. Adversarial Attacks

Federated Learning methodology is susceptible to adversarial attacks, defense mechanisms for a
more secure process is still required.

The study in [180] showed how Generative Adversarial networks (GANs) with a multitask
discriminator can extract user specific data quietly on the server side. However, the study in [181]
showed that adversarial participants can launch white-box membership inference attacks to trace
training data records.

Poisoning attacks and inference attacks are most prevalent [42]. Poisoning attacks may target
data or local model updates to prevent model training or to initiate a bias towards certain favored
features that are beneficial to the adversary. Inference attacks target the privacy of the participants.
The exchange of gradients for local updates often can cause privacy leakage [182]. The attacked can
conduct property inference by observing the difference between local model updates of a specific user
to gain information about that user.

Attacks can be carried out insiders such as server or users as well as outside adversaries. Insider
attacks are more impactful than outsider attacks, they are often categorized into a single attack [183,184],
byzantine attacks [185] and sybil attacks [149,184].

Participant-level DP can help protect users; however, the exchange in convergence rate and
accuracy may not be an attractive solution [142]. Participant-level DP is often used for large participants
pools such as thousands of users. Further work is needed to verify the ability of participant-level DP
to protect smaller participant pools as well as ensuring that the model converges properly on smaller
participant pools [42].



Sensors 2020, 20, 6230 20 of 29

5.3. Data Distribution

The data distribution within Federated Learning environment is often categorized into two
categories, IID and non-IID data. Non-IID data can be caused by the unbalanced quantity, features
and labels.

Non-IID data is much more prevalent situation in a real-world scenario. Zhao et al. [186] showed
that non-IID scenarios can lead to significant degradation in the performance of Federated Learning
models, which is caused by the weight divergence due to distribution of devices, classes and population.
They also suggested a global shared dataset partition to help improve training with non-IID data.
They showed that by sharing 5% of data a 30% increase in accuracy can be observed. However,
this increases communication costs with models and assumes that such dataset partition is always
accessible. This method also increases the susceptibility to data poisoning and adversarial attacks.

Koppararpu et al. [187] propose FedFMC which is a based on a lifelong learning technique [118]
for training non-IID data. FedFMC dynamically forks a single global model into different groups
depending on its performance on each device dataset. Devices will be grouped to achieve different
global models specific to their dataset. This allows the grouped devices to focus on different aspects
of the model depending on their dataset properties. At the end, all the forked models are merged.
However, this method makes the model more susceptible to an adversarial attack by grouping devices
with similar qualities.

6. Summary and Conclusions

Federated Learning has appeared as a distributed machine learning concept that uses local
data of distributed devices to collaborate with the objective of contributing to the training a global
model. It has shown promising performance in preserving the privacy of the participants by training
local models and uploading the model parameters to the server instead of uploading the raw data.
Privacy preservation is an ongoing challenge in smart cities sensing due to the increasing privacy
regulation. A subset of the data gathering from smart cities sensing is often used for training purposes
in machine learning models. With these in mind, leveraging Federated Learning for smart cities sensing
is envisioned. The participants will be able to provide their data with additional layers of privacy
preservation. The quality of data acquired from the participants can be directly gauged by measuring
the performance improvements gained due to the contributions of their local data. Communication
cost can be reduced with the transmission of model parameters instead of raw data. Moreover, it is
possible to empower additional privacy preserving methodologies in Federated Learning-assisted
smart cities sensing such as various applications of differential privacy as well as blockchain.

Smart city sensing is an integral part to the smart city ecosystem. This review article has initially
presented an overview of smart city sensing and its applications. This has been followed by a discussion
on the challenges of smart city sensing in both dedicated and non-dedicated scenarios. These include
major areas such as data trustworthiness, user incentives, data quality management, node deployment
energy consumption and user privacy protection. By presenting Federated Learning as a promising
methodology for preserving privacy within smart cities sensing, state-of-the-art Federated Learning
solutions have been presented in Section 3. To present the founding blocks, vertical, horizontal and
federated transfer learning as well as other improvements over standard Federated Learning have
also been introduced. More specifically in the areas of model aggregation methods, reputation-aware
models and privacy preservation methods and Blockchain integration have been reviewed. Lastly,
the applications and areas where Federated Learning can help benefit and tackle challenges within
smart city sensing have been shown.

Federated Learning is still in its infancy; hence, there are still various challenges faced in
adversarial settings. Further research into defense mechanisms is necessary to ensure security of
Federated Learning-assisted smart cities sensing. The nature of a Federated Learning environment
presents the issue of the statistical heterogeneity of the distributed data, as well as the hardware
heterogeneity of participating devices. Although these issues are mitigated through various proposed
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methods, they have not been eliminated completely. Last but not least, thorough analysis on node
deployment and coverage area for federated smart sensing is an issue that needs to be resolved before
Federated Learning can be widely adopted for smart cities sensing.
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