Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT
Abstract
:1. Introduction
1.1. The Effect of Temperature
1.2. Electrical Impedance: Measurement
1.3. Previous Examples of the Use of Electrical Impedance in Olive Production and Other Fruits
1.4. Neural Networks (NN) for Adjustment and Sorting
1.5. The Internet of Things (IoT)
- (1)
- Impedance modeling through neural networks for two varieties of olives (“Gordal Sevillana” and “Hojiblanca”), cured in caustic soda and fermented in brine (an industrial process known as “Estilo Sevillano”).
- (2)
- Classification via neural networks for each olive variety at three temperatures (25 °C, 7 °C, and 0 °C).
- A specific device with the SoC AD5933 [12], that includes an I2C communication interface [39], an external DDS generator based on a FPGA XC3S250E-4VQG100C [40] to conduct a complete sweep from 1 Hz to 100 kHz and two ADG706 analog multiplexers [41] to set the impedance range to be measured. This device is controlled by a 32-bit ARM CORTEX M3 AT91SAM 3 × 8 E microcontroller working at 84 MHz [42].
- The system control software using Matlab programing language [43].
- IoT communication is based on [44] to generate a database with the trial results.
2. Materials and Methods
2.1. Olive Varieties and Industrial Process Used
- Lye treatment in NaOH 2–4% (p/v) for 6–12 h
- Rinsed in water (12–15 h)
- Fermented in brine (10–12% (p/v) for 60–300 days)
- Pitted and stuffed or sliced.
2.2. The SoC AD5933 to Measure Impedance
2.3. Neural Networks to Modeling and Sorting
- A sorting network, “patternnet” [33], to distinguish between 6 cases (2 varieties and 3 temperatures) in unripe and another 6 cases (2 varieties and 3 temperatures) in olives processed the “Estilo Sevillano” way.
3. Results
3.1. Impedance Meter Verification Testing: DUT Made Up of a Pure Resistance of 10 kΩ
3.2. Impedance Meter Verification Testing: DUT Comprised of a SERIAL RLC Circuit
3.3. Impedance Meter Verification Testing: DUT Comprised of a PARALLEL RLC Circuit
3.4. Test on Unripe Olives: The Effect of Olive Variety on Electric Impedance
3.5. Test on Processed Olives: The effect the Olive Variety Has on Electrical Impedance in Olives Processed the “Estilo Sevillano” Way
3.6. Complex Impedance Model for “Gordal Sevillana” and “Hojiblanca” Olive Varieties Unripe and Processed the “Estilo Sevillano” Way via Neural Networks
3.7. Sorting with Neural Networks According to Variety and Temperature
3.7.1. Sorting with Neural Networks for Unripe Olives
3.7.2. Sorting with Neural Networks for “Estilo Sevillano” Processed Olives
3.8. The Internet of Things (IoT)
4. Conclusions
- Both unripe and processed olives present an impedance profile equivalent to an R-C model without an inductive component with a phase around 330° in unripe olives and 310° in brined olives.
- With unripe and processed olives, a characteristic impedance profile can be observed for each variety at each temperature. It is at a low frequency where the differences are more accentuated.
- With unripe olives at a high frequency, the relative minimums observed are similar to those described by classic models like that of Hayden, which does not happen with olives processed in brine.
- With olives processed in brine, the impedance value of the components R and X are reduced by 20 times, due to the effect of the brine.
- The models developed with neural networks like fitnet to represent the evolution of the impedance allow a model of type R versus X be obtained with only 5 neurons in the hidden layer.
- It has been verified that neural networks like patternnet and 8 neurons in the hidden layer, allow it to distinguish between the 6 cases studied (2 varieties and 3 temperatures) both in unripe and processed olives.
- The use of a simple IoT system based in Dropbox allows samples to be obtained on the farm and in the factory for later study using the combination of a laptop with a 4G connection and the prototype developed.
- A circuit implementing an SoC AD5933 has been developed with all the peripheral elements necessary for it to run. This prototype includes a pair of ADG706 analog multiplexers in order to convert the range in the impedance module to be measured.
- In order to achieve the maximum resolution in the DFT, a DDS based on an FPGA has been used to generate a clock signal to be programmed at will according to the limits of the frequency sweep to be carried out during the impedance measurement.
- Programming the main application has been done in Matlab. In order to control all of the elements, an ARM CORTEX M3 (AT91SAM3X8E) microcontroller has been used with an Arduino DUE, implementing all of the firmware necessary to control the hardware. Lastly, the Picoblaze routine control embedded in the FPGA of the DDS has been implemented in ASM.
- The resistance tests and the RLC series/parallel circuits have shown that the system works properly.
- There is a functional limitation to the chip where the internal DSP speed is proportional to the clock speed applied externally. In these circumstances, for the low frequency measurement (from 1 Hz to 30 Hz), a 25 kHz clock has been used which, compared to the frequency used (16 MHz), makes the measurement process 640 times slower at low frequencies.
- The circuit built is experimental and, in order to use it directly on the farms where the crop is located, a version capable of withstanding those working conditions ought to be produced. Likewise, the application should be an app, for example on a cell phone or a tablet, where it could connect to the computer via Bluetooth.
- One possible option is to implement all the routines through a microcontroller embedded in the FPGA, using a programable microcontroller directly in C (for example, Microblaze) in this case.
- Finally, among the future areas of work, we are considering:
- Increasing the frequency range to 25 MHz (likely on a system which allows it to go over 100 kHz) with the objective of seeing if, after that point, they are standard application models like in Hayden’s.
- Studying other olive varieties of commercial relevance like “Manzanilla” or “Cacereña” olives.
- Studying other industrial treatments like the oxidized black olive (California style).
- Running an analysis which correlates the breakage percentage in DRR machines directly with the measured impedance value of different varieties, processes, and temperatures.
Author Contributions
Funding
Conflicts of Interest
References
- Bourne, M.C. Effect of Temperature on Firmness of Raw Fruits and Vegetables. J. Food Sci. 1982, 47, 440–444. [Google Scholar] [CrossRef]
- Bourne, M.C.; Comstock, S.H. Effect of Temperature on Firmness of Thermally Processed Fruits and Vegetables. J. Food Sci. 1986, 51, 531–533. [Google Scholar] [CrossRef]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement; Academic Press: London, UK, 2002; ISBN 9780080491332. [Google Scholar]
- Kılıçkan, A.; Güner, M. Physical properties and mechanical behavior of olive fruits (Olea europaea L.) under compression loading. J. Food Eng. 2008, 87, 222–228. [Google Scholar] [CrossRef]
- Gutierrez Rubio, J. Maquina Enfriadora de Aceitunas; ES 1 003 639 U. 1988. Available online: http://www.oepm.es/pdf/ES/0000/000/01/00/36/ES-1003639_U.pdf (accessed on 15 September 2020).
- Leiva, D.; Tapia, F. Elaboración de Aceitunas Con Bajo Contenido de Sodio. In Producción de Aceitunas con Bajo Contenido de Sodio (“Light”); Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Intihuasi: La Serena, Chile, 2015; Available online: http://biblioteca.inia.cl/medios/biblioteca/boletines/NR40474.pdf (accessed on 13 September 2020).
- Gómez, A.H.S.; García, P.; Navarro, L.R. Elaboration of table olives. Grasas Aceites 2006, 57, 86–94. [Google Scholar]
- Hlaváčová, Z. Low frequency electric properties utilization in agriculture and food treatment. Res. Agric. Eng. 2003, 49, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, F.R.G.; Alwis, A.A.P.D. Electrical conductivity meter for food samples. J. Phys. E 1989, 22, 554–556. [Google Scholar] [CrossRef]
- Nelson, S.O. Dielectric properties of agricultural products-measurements and applications. IEEE Trans. Electr. Insul. 1991, 26, 845–869. [Google Scholar] [CrossRef]
- Repo, T.; Paine, D.H.; Taylor, A.G. Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.). Seed Sci. Res. 2002, 12, 17–29. [Google Scholar] [CrossRef] [Green Version]
- AD5933; Analog Devices: Norwood, MA, USA, 2005. Available online: http://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf (accessed on 15 September 2020).
- Rodríguez Gómez, R.; Cruz Hurtado, J. Sistema de medición y análisis de impedancia. Ing. Electrónica Automática Comun. 2015, 36, 56–66. [Google Scholar]
- Okada, K.; Sekino, T. Agilent Impedance Measurement Handbook. In A Guide to Measurement Technology and Techniques; Agilent Technologies: Santa Clara, CA, USA, 2009. [Google Scholar]
- Tegam. The LCR Meter as an Impedance Analyzer. Available online: http://www.tegam.com/wp-content/uploads/2015/10/AN303.pdf (accessed on 15 September 2020).
- Keysight 4395A Network/Spectrum/Impedance Analyzer. Available online: http://www.keysight.com/en/pd-1000000864%3Aepsg%3Apro-pn-4395A/network-%0Aspectrum-impedance-analyzer?cc=ES&lc=eng (accessed on 15 September 2020).
- Keysight 4194A Impedance/Gain-Phase Analyzer. Available online: https://www.keysight.com/en/pd-1000003398%3Aepsg%3Apro-pn-4194A/impedance-gain-phase-analyzer?cc=ES&lc=eng (accessed on 5 September 2020).
- Juping, G.; Long, J.; Shenbei, Q.; Xinjian, W.; Zhike, X. Researching on the automatic impedance measurement system. In Proceedings of the Eighth International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005. [Google Scholar]
- Ingenieria Eléctrica Fravedsa. Available online: http://ingenieriaelectricafravedsa.blogspot.com.es/2014/11/puente-schering.html (accessed on 15 September 2020).
- Wikipedia. Maxwell Bridge. Available online: https://en.wikipedia.org/wiki/Maxwell_bridge (accessed on 18 September 2020).
- Ibrahim, K.M.; Abdul-Karim, M.A.H. Digital Impedance Measurement by Generating Two Waves. IEEE Trans. Instrum. Meas. 1985, IM-34, 2–5. [Google Scholar] [CrossRef]
- Taha, S.M.R. Digital measurement of the polar and rectangular forms of impedances. IEEE Trans. Instrum. Meas. 1989, 38, 59–63. [Google Scholar] [CrossRef]
- Steber, G.R. A Low Cost RF Impedance Analyzer. Nuts and Volts. February 2008, pp. 38–41. Available online: https://www.nutsvolts.com/magazine/article/a_low_cost_rf_impedance_analyzer (accessed on 15 September 2020).
- Castelló, J.; Espí, J.; García, R.; Esteve, V. Analizador de Impedancia/Ganancia-Fase para PC. Rev. Española Electrónica 2001, 565, 70–75. [Google Scholar]
- Justicia, M.; Madueño, A.; Ruiz-Canales, A.; Molina, J.M.; López, M.; Madueño, J.M.; Granados, J.A. Low-frequency characterisation of mesocarp electrical conductivity in different varieties of olives (Olea europaea L.). Comput. Electron. Agric. 2017, 142, 338–347. [Google Scholar] [CrossRef]
- Weaver, G.M.; Jackson, H.O. Electric impedance, an objective index of maturity in peach. Can. J. Plant Sci. 1966, 46, 323–326. [Google Scholar] [CrossRef]
- Ezeike, G.O.I. A resistive probe moisture sensor for tropical root crops and vegetables. J. Agric. Eng. Res. 1987, 37, 15–26. [Google Scholar] [CrossRef]
- Montoya Lirola, M. Estudio de la Conductividad Eléctrica Como Índice de Madurez en Frutos Climatéricos y su Evolución Durante la Conservación Frigorífica en Atmosfera Normal y Modificada. Ph.D. Thesis, UNED, Madrid, Spain, 1992. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=40951 (accessed on 15 September 2020).
- Van Gerven, M.; Bohte, S. Editorial: Artificial Neural Networks as Models of Neural Information Processing. Front. Comput. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- De Jódar Lázaro, M.; Madueño Luna, A.; Lucas Pascual, A.; Martínez, J.M.M.; Canales, A.R.; Madueño Luna, J.M.; Segovia, M.J.; Sánchez, M.B. Deep learning in olive pitting machines by computer vision. Comput. Electron. Agric. 2020, 171, 105304. [Google Scholar] [CrossRef]
- Lucas Pascual, A.; Madueño Luna, A.; de Jódar Lázaro, M.; Molina Martínez, J.M.; Ruiz Canales, A.; Madueño Luna, J.M.; Justicia Segovia, M. Analysis of the Functionality of the Feed Chain in Olive Pitting, Slicing and Stuffing Machines by IoT, Computer Vision and Neural Network Diagnosis. Sensors 2020, 20, 1541. [Google Scholar] [CrossRef] [Green Version]
- The MathWorks Inc. Function Fitting Neural Network (Fitnet). Available online: https://es.mathworks.com/help/deeplearning/ref/fitnet.html (accessed on 15 September 2020).
- The MathWorks Inc. Pattern Recognition Network (Patternnet). Available online: https://es.mathworks.com/help/deeplearning/ref/patternnet.html;jsessionid=370562d44f3c46b93a717f92677f (accessed on 18 September 2020).
- Lougheed, E.C.; Miller, S.R.; Ripley, B.D.; Cline, R.A. Electrical impedance of daminozide- and calcium-treated McIntosh apples. Experientia 1981, 37, 835–837. [Google Scholar] [CrossRef]
- Jackson, P.J.; Harker, F.R. Apple Bruise Detection by Electrical Impedance Measurement. HortScience 2000, 35, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Stout, D.G.; Hall, J.W.; McLaughlin, N.B. In vivo plant impedance measurements and characterization of membrane electrical properties: The influence of cold acclimation. Cryobiology 1987, 24, 148–162. [Google Scholar] [CrossRef]
- Stout, D.G. Effect of Cold Acclimation on Bulk Tissue Electrical Impedance. Plant Physiol. 1988, 86, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Bauchot, A.D.; Harker, F.R.; Arnold, W.M. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol. Technol. 2000, 18, 9–18. [Google Scholar] [CrossRef]
- NXP Semiconductors. I2C Bus. Available online: http://www.interfacebus.com/Design_Connector_I2C.html (accessed on 14 September 2020).
- Xilinx Inc. Spartan-3E Fpga. Available online: https://www.digikey.es/es/datasheets/xilinxinc/xilinx-inc-ds312 (accessed on 15 September 2020).
- ADG706 Analog Multiplexer; Analog Devices: Norwood, MA, USA, 2005. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ADG706_707.pdf (accessed on 15 September 2020).
- Microchip ARM Cortex-M3. Available online: https://www.microchip.com/wwwproducts/en/ATSAM3X8E (accessed on 16 September 2020).
- The MathWorks Inc. Matlab Software. Available online: https://es.mathworks.com/products/matlab.html (accessed on 11 September 2020).
- Dropbox. Available online: https://www.dropbox.com/ (accessed on 19 September 2020).
- Rappoport, H. Botánica y Morfología. In El Cultivo del Olivo; Mundi-Prensa: Madrid, Spain, 2008; pp. 35–60. [Google Scholar]
- Ferreira, J. Explotaciones Olivareras Colaboradoras; Number 5; Ministerio de Agricultura: Madrid, Spain, 1979.
- Garrido, A.; García, P.; Brrenes, M. Olive fermentations. In Biotechnology: A Multivolume Comprehesive Treatise; Reed, H.J., Nagodawitana, T.W., Eds.; Wiley-VCH: Weinheim, German, 1995; pp. 593–625. [Google Scholar]
- Estrada, J.M. La Aceituna de Mesa: Nociones Sobre sus Características, Elaboración y Cualidades; Fundacion Para El Fomento y Promocion de la Aceituna de Mesa: Sevilla, Spain, 2011; Available online: http://www.besana.es/sites/default/files/libroaceitunamaqueta080411.pdf (accessed on 15 September 2020).
- Garrido, A.; García, P.; López, A.; Arroyo, F.N. Processing Technology in Olive Oil and Table Olive; International Olive Council: Madrid, Spain, 2006; Available online: https://pdfs.semanticscholar.org/5999/f039244e30eda8538c20a2f2b47092c4f55e.pdf (accessed on 17 September 2020).
- Stockham, T.G. High-speed convolution and correlation. In Proceedings of the Spring Joint Computer Conference on XX—AFIPS ’66 (Spring), Boston, MA, USA, 26–28 April 1966; ACM Press: New York, NY, USA, 1966; p. 229. [Google Scholar]
- Chen, C.J.; Liu, J.T.; Chang, S.J.; Lee, M.W.; Tsai, J.Z. Development of a portable impedance detection system for monitoring the growth of mouse L929 cells. J. Taiwan Inst. Chem. Eng. 2012, 43, 678–684. [Google Scholar] [CrossRef]
- Schwarzenberger, T.; Wolf, P.; Brischwein, M.; Kleinhans, R.; Demmel, F.; Lechner, A.; Becker, B.; Wolf, B. Impedance sensor technology for cell-based assays in the framework of a high-content screening system. Physiol. Meas. 2011, 32, 977–993. [Google Scholar] [CrossRef]
- Wang, M.H.; Kao, M.F.; Jang, L.S. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device. Rev. Sci. Instrum. 2011, 82, 064302. [Google Scholar] [CrossRef]
- Helen Berney, H.; O’Riordan, J.J. Impedance Measurement Monitors Blood Coagulation. Analog Dialogue 2008, 42, 2–4. [Google Scholar]
- Broeders, J.; Duchateau, S.; van Grinsven, B.; Vanaken, W.; Peeters, M.; Cleij, T.; Thoelen, R.; Wagner, P.; de Ceuninck, W. Miniaturised eight-channel impedance spectroscopy unit as sensor platform for biosensor applications. Phys. Status Solidi A 2011, 208, 1357–1363. [Google Scholar] [CrossRef]
- Seoane, F.; Ferreira, J.; Sanchéz, J.J.; Bragós, R. An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiol. Meas. 2008, 29, S267–S278. [Google Scholar] [CrossRef] [Green Version]
- Bogónez-Franco, P.; Bayés-Genís, A.; Rosell, J.; Bragós, R. Performance of an implantable impedance spectroscopy monitor using ZigBee. J. Phys. Conf. Ser. 2010, 224, 012163. [Google Scholar] [CrossRef]
- Ferreira, J.; Seoane, F.; Lindecrantz, K. AD5933-based electrical bioimpedance spectrometer. Towards textile-enabled applications. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Piscataway, NY, USA, 2011; pp. 3282–3285. [Google Scholar]
- Margo, C.; Katrib, J.; Nadi, M.; Rouane, A. A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip. Physiol. Meas. 2013, 34, 391–405. [Google Scholar] [CrossRef]
- Melwin, A.; Rajasekaran, K. Implementation of Bioimpedance Instrument Kit in ARM7. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 5, 1271–1273. [Google Scholar]
- Hoja, J.; Lentka, G. Interface circuit for impedance sensors using two specialized single-chip microsystems. Sens. Actuators A Phys. 2010, 163, 191–197. [Google Scholar] [CrossRef]
- Hoja, J.; Lentka, G. A Family of New Generation Miniaturized Impedance Analyzers for Technical Object Diagnostics. Metrol. Meas. Syst. 2013, 20, 43–52. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, O.G. Bioimpedance and Bioelectricity Basics, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2014; ISBN 9780124115330. [Google Scholar]
- Chabowski, K.; Piasecki, T.; Dzierka, A.; Nitsch, K. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit. Metrol. Meas. Syst. 2015, 22, 13–24. [Google Scholar] [CrossRef]
- Simic, M. Realization of Complex Impedance Measurement System Based on the Integrated Circuit AD5933. In Proceedings of the 21st Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 26–28 November 2012; IEEE: Piscataway, NY, USA, 2013; pp. 573–576. [Google Scholar]
- Simić, M. Complex Impedance Measurement System for the Frequency Range from 5 kHz to 100 kHz. Key Eng. Mater. 2015, 644, 133–136. [Google Scholar] [CrossRef]
- Simic, M. Realization of digital LCR meter. In Proceedings of the International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 16–18 October 2014; IEEE: Piscataway, NY, USA, 2014; pp. 769–773. [Google Scholar]
- Madueño, J.M. Papers Appendix. Available online: https://www.dropbox.com/sh/wg1hmyxdgt558nc/AACPWe1XJi_tYcJoFzVihv3Ya?dl=0 (accessed on 15 September 2020).
- Hayden, R.I.; Moyse, C.A.; Calder, F.W.; Crawford, D.P.; Fensom, D.S. Electrical Impedance Studies on Potato and Alfalfa Tissue. J. Exp. Bot. 1969, 20, 177–200. [Google Scholar] [CrossRef]
- Wu, L.; Ogawa, Y.; Tagawa, A. Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. J. Food Eng. 2008, 87, 274–280. [Google Scholar] [CrossRef]
- The MathWorks Inc. Network Performance. Available online: https://es.mathworks.com/help/deeplearning/ref/perform.html (accessed on 14 September 2020).
Author | Purpose | Frequency Range | Impedance Range | Maximum Error |
---|---|---|---|---|
C. J. Chen et al. [51] | Monitoring Cell Cultures | Set to 10 Hz | Not specified | Not specified |
T. Schwarzenberger et al. [52] | Monitoring Cell Cultures | 100 Hz–100 kHz | Not specified | 2%–magnitude, 2%–argument |
M. H. Wang et al. [53] (uses an AD5934) | Measuring Isolated Cells | 0.1 Hz–100 kHz | 100 Ω–10 MΩ | Around 10% for cell measurement |
J. Broeders et al. [55] | Biosensor Application | 10 Hz–100 kHz | 10 Ω–5 MΩ | Not specified |
P. Bogónez-Franco et al. [57] | Bioimpedance Monitor | 100 Hz–200 kHz | 10 Ω–1 kΩ | 2.5%–magnitude, 4.5%–argument |
J. Ferreira et al. [58] | Bioimpedance Electrodes In Clothing | 5 kHz–450 kHz | Not specified | 0.7%–resistance, 17%–reactance |
C. Margo et al. [59] | “Embedded” applications for bioimpedance | 1 kHz–100 kHz | Not specified. No data | 2.5%–magnitude, 1.3%–argument |
A. Melwin y K. Rajasekaran [60] | Body composition measurements | Set to 50 kHz | Not specified | 2% (not specified) |
J. Hoja y G. Lentka [61,62] | Object monitoring technique | 0.01 Hz–100 kHz | 10 Ω–10 GΩ | 1.6%–magnitude, 0.6%–argument |
Variety | Temperature | P | Relative Error (%) |
---|---|---|---|
0 °C | 7.3753 × 103 | 1.33% | |
“Gordal Sev.” | 7 °C | 788.9215 | 0.08% |
25 °C | 1.2965 × 103 | 0.33% | |
0 °C | 1.0014 × 103 | 0.18% | |
“Hojiblanca” | 5 °C | 294.0392 | 0.05% |
20 °C | 2.1827 × 103 | 0.36% |
Variety | Temperature | P | Relative Error (%) |
---|---|---|---|
0 °C | 1.6073 × 103 | 1.14% | |
“Gordal Sev.” | 7 °C | 1.885 × 103 | 0.34% |
25 °C | 6.3865 | 1.27% | |
0 °C | 1.4252 × 103 | 0.25% | |
“Hojiblanca” | 7 °C | 6.321 × 103 | 1.14% |
25 °C | 2.218 × 103 | 0.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, J.M.M.; Luna, A.M.; Fernández, R.E.H. Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT. Sensors 2020, 20, 5932. https://doi.org/10.3390/s20205932
Luna JMM, Luna AM, Fernández REH. Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT. Sensors. 2020; 20(20):5932. https://doi.org/10.3390/s20205932
Chicago/Turabian StyleLuna, José Miguel Madueño, Antonio Madueño Luna, and Rafael E. Hidalgo Fernández. 2020. "Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT" Sensors 20, no. 20: 5932. https://doi.org/10.3390/s20205932
APA StyleLuna, J. M. M., Luna, A. M., & Fernández, R. E. H. (2020). Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT. Sensors, 20(20), 5932. https://doi.org/10.3390/s20205932