Application of LSTM Network to Improve Indoor Positioning Accuracy
Abstract
:1. Introduction
- No need for LOS/NLOS distinction, processing channel impulse responses predicts ranging error using LSTM Networks with memory functions. The predicted results are used to build a weight matrix to improve the accuracy of positioning.
- Since the correlation between the CIR signals is captured, the training effect shows that the accuracy of the distance measurement error predicted by the LSTM network reaches the centimeter level.
- The ranging error predicted by the LSTM network is used for positioning correction. The results show that the worse the positioning conditions, the greater the error correction value. In an environment with good positioning conditions, the corrected positioning results can meet most positioning requirements.
2. Materials and Methods
3. Results
3.1. System Architecture
3.2. LSTM for Ranging Error
3.3. Positioning Optimization Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Minetto, A.; Dovis, F. On the Information Carried by Correlated Collaborative Ranging Measurements for Hybrid Positioning. IEEE Trans. Veh. Technol. 2020, 69, 1419–1427. [Google Scholar] [CrossRef]
- Xu, H.; Ding, Y.; Li, P.; Wang, R.; Li, Y. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor. Sensors 2017, 17, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannizzaro, D.; Zafiri, M.; Jahier Pagliari, D.; Patti, E.; Macii, E.; Poncino, M.; Acquaviva, A. A Comparison Analysis of BLE-Based Algorithms for Localization in Industrial Environments. Electronics 2020, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Cahyadi, W.A.; Chung, Y.H.; Adiono, T. Infrared Indoor Positioning Using Invisible Beacon. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 341–345. [Google Scholar] [CrossRef]
- Kolakowski, M.; Modelski, J. First path component power based NLOS mitigation in UWB positioning system. In Proceedings of the 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Marano, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
- Barral, V.; Escudero, C.; Garcianaya, J.A. NLOS Classification Based on RSS and Ranging Statistics Obtained from Low-Cost UWB Devices. In Proceedings of the 2019 27th European Signal Processing Conference, A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Ledergerber, A.; D’Andrea, R. A Multi-Static Radar Network with Ultra-Wideband Radio-Equipped Devices. Sensors 2020, 20, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molisch, A.F. Ultra-Wide-Band Propagation Channels. Proc. IEEE 2009, 97, 353–371. [Google Scholar] [CrossRef]
- Cetin, O.; Nazh, H.; Gurcan, R.; Öztürk, H.; Güneren, H.; Yelkovan, Y.; Çayir, M.; Çelebi, H.; Partal, H.P. An experimental study of high precision TOA based UWB positioning systems. In Proceedings of the 2012 IEEE International Conference on Ultra-Wideband, Syracuse, NY, USA, 17–20 September 2012; pp. 357–361. [Google Scholar]
- Yu, K.; Guo, Y.J. Statistical NLOS Identification Based on AOA, TOA, and Signal Strength. IEEE Trans. Veh. Technol. 2009, 58, 274–286. [Google Scholar] [CrossRef]
- Schroeder, J.; Galler, S.; Kyamakya, K. A low-cost experimental ultra-wideband positioning system. In Proceedings of the 2005 IEEE International Conference on Ultra-Wideband, Zurich, Switzerland, 5–8 September 2005; pp. 632–637. [Google Scholar]
- Wann, C.; Yeh, Y.; Hsueh, C. Hybrid TDOA/AOA Indoor Positioning and Tracking Using Extended Kalman Filters. In Proceedings of the 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 7–10 May 2006; pp. 1058–1062. [Google Scholar]
- Zhu, D.; Yi, K. EKF localization based on TDOA/RSS in underground mines using UWB ranging. In Proceedings of the 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 14–16 September 2011; pp. 1–4. [Google Scholar]
- Taponecco, L.; Damico, A.A.; Mengali, U. Joint TOA and AOA Estimation for UWB Localization Applications. IEEE Trans. Wirel. Commun. 2011, 10, 2207–2217. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, T. UWB Indoor Positioning Algorithm Based on TDOA Technology. In Proceedings of the 2019 10th International Conference on Information Technology in Medicine and Education, Qingdao, China, 23–25 August 2019. [Google Scholar]
- Cong, L.; Zhuang, W. Non-line-of-sight error mitigation in TDOA mobile location. In Proceedings of the Global Communications Conference, San Antonio, TX, USA, 25–29 November 2001; pp. 680–684. [Google Scholar]
- Gururaj, K.; Rajendra, A.K.; Song, Y.; Law, C.L.; Cai, G. Real-time identification of NLOS range measurements for enhanced UWB localization. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 18–21 September 2017; pp. 1–7. [Google Scholar]
- Wymeersch, H.; Marano, S.; Gifford, W.M.; Win, M.Z. A Machine Learning Approach to Ranging Error Mitigation for UWB Localization. IEEE Trans. Commun. 2012, 60, 1719–1728. [Google Scholar] [CrossRef] [Green Version]
- Van Nguyen, T.; Jeong, Y.; Shin, H.; Win, M.Z. Machine Learning for Wideband Localization. IEEE J. Sel. Areas Commun. 2015, 33, 1357–1380. [Google Scholar] [CrossRef]
- Bregar, K.; Mohorcic, M. Improving Indoor Localization Using Convolutional Neural Networks on Computationally Restricted Devices. IEEE Access 2018, 6, 17429–17441. [Google Scholar] [CrossRef]
- Jiang, C.; Shen, J.; Chen, S.; Chen, Y.; Liu, D.; Bo, Y. UWB NLOS/LOS Classification Using Deep Learning Method. IEEE Commun. Lett. 2020, 24. [Google Scholar] [CrossRef]
- Graves, A. Long Short-Term Memory; Springer: Berlin, German, 2012; pp. 1735–1780. [Google Scholar]
Part1 | APs | LOS/NLOS | Part2 | APs | LOS/NLOS |
---|---|---|---|---|---|
Tag1 | 48 | 17/31 | Tag3 | 35 | 13/22 |
Tag2 | 51 | 15/36 | Tag4 | 36 | 6/30 |
Part 1 | Part 2 | ||
---|---|---|---|
Tag1 | 0.032 | Tag3 | 0.022 |
Tag2 | 0.039 | Tag4 | 0.018 |
Anchors | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|
LS | 3.24 | 2.83 | 2.46 | 2.34 | 1.17 |
WLS | 1.51 | 1.38 | 1.12 | 1.01 | 0.43 |
WRLS | 1.40 | 1.22 | 0.97 | 0.90 | 0.31 |
Anchors | WLS (m) | WRLS (m) |
---|---|---|
4 | 1.73 | 1.84 |
5 | 1.45 | 1.61 |
6 | 1.34 | 1.49 |
7 | 1.33 | 1.44 |
8 | 0.74 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Zeng, X.; Wang, J.; Su, Y. Application of LSTM Network to Improve Indoor Positioning Accuracy. Sensors 2020, 20, 5824. https://doi.org/10.3390/s20205824
Gao D, Zeng X, Wang J, Su Y. Application of LSTM Network to Improve Indoor Positioning Accuracy. Sensors. 2020; 20(20):5824. https://doi.org/10.3390/s20205824
Chicago/Turabian StyleGao, Dongqi, Xiangye Zeng, Jingyi Wang, and Yanmang Su. 2020. "Application of LSTM Network to Improve Indoor Positioning Accuracy" Sensors 20, no. 20: 5824. https://doi.org/10.3390/s20205824
APA StyleGao, D., Zeng, X., Wang, J., & Su, Y. (2020). Application of LSTM Network to Improve Indoor Positioning Accuracy. Sensors, 20(20), 5824. https://doi.org/10.3390/s20205824