Industrial Wireless Sensor Networks: Protocols and Applications
Abstract
:1. Introduction
- Protocols for industrial wireless sensor networks
- Wireless network control systems
- Real-time communications in IWSNs
- IWSN testbeds and applications such as smart factories
- Edge and fog computing for IWSN
- Any subjects relevant to IWSN.
2. Brief Review of the Published Articles
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, B.-S.; Kim, S.; Kim, K.H.; Sung, T.-E.; Shah, B.; Kim, K.-I. Adaptive Real-Time Routing Protocol for (m,k)-Firm in Industrial Wireless Multimedia Sensor Networks. Sensors 2020, 20, 1633. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peng, M.; Li, B.; Yan, Z.; Yang, M. A Spatial Group-Based Multi-User Full-Duplex OFDMA MAC Protocol for the Next-Generation WLAN. Sensors 2020, 20, 3826. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, T.; Kim, T. Distributed Node Scheduling with Adjustable Weight Factor for Ad-hoc Networks. Sensors 2020, 20, 5093. [Google Scholar] [CrossRef] [PubMed]
- ElSharief, M.; El-Gawad, M.A.A.; Ko, H.; Pack, S. EERS: Energy-Efficient Reference Node Selection Algorithm for Synchronization in Industrial Wireless Sensor Networks. Sensors 2020, 20, 4095. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Zhang, Y.; Qiao, D.; Zhang, X.; Wymore, M.L.; Sangaiah, A.K. A Robust Time Synchronization Scheme for Industrial Internet of Things. IEEE Trans. Ind. Inform. 2017, 14, 3570–3580. [Google Scholar] [CrossRef]
- ElSharief, M.; El-Gawad, M.A.A.; Kim, H. FADS: Fast Scheduling and Accurate Drift Compensation for Time Synchronization of Wireless Sensor Networks. IEEE Access 2018, 6, 65507–65520. [Google Scholar] [CrossRef]
- ElSharief, M.; Abd El-Gawad, M.A.; Kim, H. Low-Power Scheduling for Time Synchronization Protocols in A Wireless Sensor Networks. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Lino, M.; Leão, E.; Soares, A.; Montez, C.; Vasques, F.; Moraes, R. Dynamic Reconfiguration of Cluster-Tree Wireless Sensor Networks to Handle Communication Overloads in Disaster-Related Situations. Sensors 2020, 20, 4707. [Google Scholar] [CrossRef]
- Leão, E.; Moraes, R.; Montez, C.; Portugal, P.; Vasques, F. CT-SIM: A simulation model for wide-scale cluster-tree networks based on the IEEE 802.15.4 and ZigBee standards. Int. J. Distrib. Sens. Netw. 2017, 13, 1–17. [Google Scholar]
- Florencio, H.; Dória Neto, A.; Martins, D. ISA 100.11a Networked Control System Based on Link Stability. Sensors 2020, 20, 5417. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.-e.; Kim, T. Industrial Wireless Sensor Networks: Protocols and Applications. Sensors 2020, 20, 5809. https://doi.org/10.3390/s20205809
Yoo S-e, Kim T. Industrial Wireless Sensor Networks: Protocols and Applications. Sensors. 2020; 20(20):5809. https://doi.org/10.3390/s20205809
Chicago/Turabian StyleYoo, Seong-eun, and Taehong Kim. 2020. "Industrial Wireless Sensor Networks: Protocols and Applications" Sensors 20, no. 20: 5809. https://doi.org/10.3390/s20205809