A Langasite Crystal Microbalance Coated with Graphene Oxide-Platinum Nanocomposite as a Volatile Organic Compound Sensor: Detection and Discrimination Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Gas Sensing Setup
2.3. Sensor Data Acquisition
3. Results
3.1. Sensing Material Characterization
3.1.1. Raman Spectroscopy
3.1.2. Field-Effect Scanning Electron Microscopy (FESEM)
3.1.3. X-ray Photoelectron Spectroscopy
3.2. Functional Groups and the Sensing Mechanism
3.3. VOC Sensing Results
3.3.1. Electrical Sensitivity
3.3.2. Mechanical Sensitivity
3.3.3. Sensitivity Comparison with Bare LCM
3.3.4. Selectivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor metal oxides as chemoresistive sensors for detecting volatile organic compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [Green Version]
- Donarelli, M.; Ottaviano, L. 2D Materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, S.R.; Speller, N.C.; Chhotaray, P.; McCarter, K.S.; Siraj, N.; Pérez, R.L.; Li, Y.; Warner, I.M. Class specific discrimination of volatile organic compounds using a quartz crystal microbalance based multisensor array. Talanta 2018, 188, 423–428. [Google Scholar] [CrossRef]
- Gao, F.; Boussaid, F.; Xuan, W.; Tsui, C.Y.; Bermak, A. Dual transduction surface acoustic wave gas sensor for VOC discrimination. IEEE Electron Device Lett. 2018, 39, 1920–1923. [Google Scholar] [CrossRef]
- Speller, N.C.; Siraj, N.; McCarter, K.S.; Vaughan, S.; Warner, I.M. QCM virtual sensor array: Vapor identification and molecular weight approximation. Sens. Actuators Chem. 2017, 246, 952–960. [Google Scholar] [CrossRef]
- Regmi, B.P.; Speller, N.C.; Anderson, M.J.; Brutus, J.O.; Merid, Y.; Das, S.; El-Zahab, B.; Hayes, D.J.; Murray, K.K.; Warner, I.M. Molecular weight sensing properties of ionic liquid-polymer composite films: Theory and experiment. J. Mater. Chem. 2014, 2, 4867–4878. [Google Scholar] [CrossRef]
- Potyrailo, R.A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef]
- Patel, S.V.; Hobson, S.T.; Cemalovic, S.; Tolley, W.K. Comparing selectivity of functionalized graphenes used for chemiresistive hydrocarbon vapor detection. ACS Appl. Nano Mater. 2018, 1, 4092–4100. [Google Scholar] [CrossRef]
- Varghese, S.S.; Varghese, S.H.; Swaminathan, S.; Singh, K.K.; Mittal, V. Two-dimensional materials for sensing: Graphene and beyond. Electronics 2015, 4, 651–687. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhang, M.; Dong, L.; Sun, Y.; Su, Y.; Xue, Z.; Di, Z. Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 2019, 9, 075207. [Google Scholar] [CrossRef] [Green Version]
- Dan, Y.; Lu, Y.; Kybert, N.J.; Luo, Z.; Johnson, A.C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, R.; Safaiee, R.; Sheikhi, M.H.; Golshan, M.M.; Horastani, Z.K. Graphene decorated with silver nanoparticles as a low-temperature methane gas sensor. ACS Appl. Mater. Interfaces 2019, 11, 21795–21806. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S.H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Tu, N.D.K.; Choi, J.; Park, C.R.; Kim, H. Remarkable conversion between n-and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem. Mater. 2015, 27, 7362–7369. [Google Scholar] [CrossRef]
- Jung, I.; Dikin, D.A.; Piner, R.D.; Ruoff, R.S. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 2008, 8, 4283–4287. [Google Scholar] [CrossRef]
- Gautam, M.; Jayatissa, A.H. Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 2012, 112, 114326. [Google Scholar] [CrossRef]
- Gautam, M.; Jayatissa, A.H. Adsorption kinetics of ammonia sensing by graphene films decorated with platinum nanoparticles. J. Appl. Phys. 2012, 111, 094317. [Google Scholar] [CrossRef]
- Haghighi, E.; Zeinali, S. Nanoporous MIL-101 (Cr) as a sensing layer coated on a quartz crystal microbalance (QCM) nanosensor to detect volatile organic compounds (VOCs). RSC Adv. 2019, 9, 24460–24470. [Google Scholar] [CrossRef] [Green Version]
- Van Quang, V.; Hung, V.N.; Phan, V.N.; Huy, T.Q.; Van Quy, N. Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature. Thin Solid Films 2014, 568, 6–12. [Google Scholar] [CrossRef]
- Saha, T.; Guo, N.; Ramakrishnan, N. A novel langasite crystal microbalance instrumentation for UV sensing application. Sens. Actuators Phys. 2016, 252, 16–25. [Google Scholar] [CrossRef]
- Shen, D.; Li, X.; Kang, Q.; Zhang, H.; Qi, Y. Monitor adsorption of acetone vapor to a room temperature ionic liquid 1-octyl-3-methylimidazolium bromide by a langasite crystal resonator. Anal. Chim. Acta 2016, 566, 19–28. [Google Scholar] [CrossRef]
- Uddin, A.I.; Lee, K.W.; Chung, G.S. Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid. Sens. Actuators Chem. 2015, 216, 33–40. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phattharasupakun, N.; Wutthiprom, J.; Suktha, P.; Ma, N.; Sawangphruk, M. Enhancing the charge storage capacity of lithium-ion capacitors using nitrogen-doped reduced graphene oxide aerogel as a negative electrode: A hydrodynamic rotating disk electrode investigation. J. Electrochem. Soc. 2018, 165, A609–A617. [Google Scholar] [CrossRef]
- Lipatov, A.; Guinel, M.J.F.; Muratov, D.S.; Vanyushin, V.O.; Wilson, P.M.; Kolmakov, A.; Sinitskii, A. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements. Appl. Phys. Lett. 2018, 112, 053103. [Google Scholar] [CrossRef]
- Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1, 403. [Google Scholar] [CrossRef]
- Ma, J.; Habrioux, A.; Luo, Y.; Ramos-Sanchez, G.; Calvillo, L.; Granozzi, G.; Balbuena, P.B.; Alonso-Vante, N. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: Effect on the oxygen reduction reaction. J. Mater. Chem. 2015, 3, 11891–11904. [Google Scholar] [CrossRef]
- Rumble, J.; Bruno, T.J. CRC Handbook of Chemistry and Physics, 100th ed.; CRC Press: Borarton, FL, USA, 2019. [Google Scholar]
- Sauerbrey, G. The Use of Quartz Oscillators for Weighing Thin Layers and for Microweighing. Zeitschrift Für Physik 1959, 155, 206–222. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leong, A.; Saha, T.; Swamy, V.; Ramakrishnan, N. A Langasite Crystal Microbalance Coated with Graphene Oxide-Platinum Nanocomposite as a Volatile Organic Compound Sensor: Detection and Discrimination Characteristics. Sensors 2020, 20, 334. https://doi.org/10.3390/s20020334
Leong A, Saha T, Swamy V, Ramakrishnan N. A Langasite Crystal Microbalance Coated with Graphene Oxide-Platinum Nanocomposite as a Volatile Organic Compound Sensor: Detection and Discrimination Characteristics. Sensors. 2020; 20(2):334. https://doi.org/10.3390/s20020334
Chicago/Turabian StyleLeong, Ainan, Tridib Saha, Varghese Swamy, and Narayanan Ramakrishnan. 2020. "A Langasite Crystal Microbalance Coated with Graphene Oxide-Platinum Nanocomposite as a Volatile Organic Compound Sensor: Detection and Discrimination Characteristics" Sensors 20, no. 2: 334. https://doi.org/10.3390/s20020334
APA StyleLeong, A., Saha, T., Swamy, V., & Ramakrishnan, N. (2020). A Langasite Crystal Microbalance Coated with Graphene Oxide-Platinum Nanocomposite as a Volatile Organic Compound Sensor: Detection and Discrimination Characteristics. Sensors, 20(2), 334. https://doi.org/10.3390/s20020334