Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Reflection of Scanning Beam from the Thin Layer
2.2. Interference of Optical Beams from a Thin Layer and the Reference Arm in the OCT System
3. Measurements
3.1. Measurement of Thin Foil
3.2. Measurement of the Wedge Cell
4. Discussion
4.1. General Overview of the Method and Proof of Concept
4.2. Validation of the Method Implementation
4.3. Thin Film Measurements with the Standard OCT System
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Fercher, A.; Drexler, W.; Hitzenberger, C.; Lasser, T. Optical Coherence Tomography—Principles and Applications. Rep. Prog. Phys. 2003, 66, 239–303. [Google Scholar] [CrossRef]
- Tomlins, P.H.; Wang, R.K. Theory, Developments and Applications of Optical Coherence Tomography. J. Phys. D Appl. Phys. 2005, 38, 2519–2535. [Google Scholar] [CrossRef]
- Xiao, P.; Mazlin, V.; Grieve, K.; Sahel, J.-A.; Fink, M.; Boccara, A.C. In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT. Optica 2018, 5, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Karacorlu, M.; Muslubas, I.S.; Arf, S.; Hocaoglu, M.; Ersoz, M.G. Membrane patterns in eyes with choroidal neovascularization on optical coherence tomography angiography. Eye 2019, 33, 1280–1289. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.Y.; Lee, S.-Y.; Jeong, J.H.; Lee, E.K. Foveal Microvascular Structures in Eyes with Silicone Oil Tamponade for Rhegmatogenous Retinal Detachment: A Swept-Source Optical Coherence Tomography Angiography Study. Sci. Rep. 2020, 10, 2555. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Wijesinghe, R.E.; Ravichandran, N.K.; Han, S.; Kim, P.; Jeon, M.; Jung, H.-Y.; Kim, J. On-Field In Situ Inspection for Marssonina Coronaria Infected Apple Blotch Based on Non-Invasive Bio-Photonic Imaging Module. IEEE Access 2019, 7, 148684–148691. [Google Scholar] [CrossRef]
- Larimer, C.J.; Denis, E.H.; Suter, J.D.; Moran, J.J. Optical coherence tomography imaging of plant root growth in soil. Appl. Opt. 2020, 58, 2474–2481. [Google Scholar] [CrossRef]
- Grombe, R.; Kirsten, L.; Mehner, M.; Linsinger, T.P.; Koch, E. Improved Non-Invasive Optical Coherence Tomography Detection of Different Engineered Nanoparticles in Food-Mimicking Matrices. Food Chem. 2016, 212, 571–575. [Google Scholar] [CrossRef]
- Strąkowski, M.R.; Głowacki, M.; Kamińska, A.; Sawczak, M. Gold Nanoparticles Evaluation Using Functional Optical Coherence Tomography. Proc. SPIE Int. Soc. Opt. Eng. 2017, 10053, 1005336. [Google Scholar] [CrossRef]
- Strąkowski, M.; Kraszewski, M.; Trojanowski, M.; Pluciński, J. Time-frequency analysis in optical coherence tomography for technical objects examination. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9132, 91320N. [Google Scholar] [CrossRef]
- Fujimoto, J.G.; Schmitt, J.; Swanson, E.; Aguirre, A.D.; Jang, I.-K. The Development of Optical Coherence Tomography. In Cardiovascular OCT Imaging; Jang, I.-K., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–23. [Google Scholar] [CrossRef]
- Morgner, U.; Drexler, W.; Kärtner, F.; Li, X.; Pitris, C. Spectroscopic Optical Coherence Tomography. Opt. Lett. 2000, 254, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Strąkowski, M.; Pluciński, J.; Kosmowski, B.B. Polarization sensitive optical coherence tomography with spectroscopic analysis. Acta Phys. Pol. A 2011, 120, 785–788. [Google Scholar] [CrossRef]
- de Boer, J.F.; Hitzenberger, C.K.; Yasuno, Y. Polarization Sensitive Optical Coherence Tomography—A Review [Invited]. Biomed. Opt. Express 2017, 8, 1838–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desissaire, S.; Schwarzhans, F.; Salas, M.; Wartak, A.; Fischer, G.; Vass, C.; Pircher, M.; Hitzenberger, C.K. Analysis of Longitudinal Sections of Retinal Vessels Using Doppler OCT. Biomed. Opt. Express 2020, 11, 1772–1789. [Google Scholar] [CrossRef] [PubMed]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]
- Liang, X.; Xia, J.; Dong, G.; Tian, B.; Lianmao, P. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application. In Single-Walled Carbon Nanotubes: Preparation, Properties and Applications; Li, Y., Maruyama, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 225–256. [Google Scholar] [CrossRef]
- Mühlig, C.; Triebel, W.; Kufert, S.; Bublitz, S. Characterization of Low Losses in Optical Thin Films and Materials. Appl. Opt. 2008, 47, C135–C142. [Google Scholar] [CrossRef]
- Śmietana, M.; Koba, M.; Sezemsky, P.; Szot-Karpińska, K.; Burnat, D.; Stranak, V.; Niedziółka-Jönsson, J.; Bogdanowicz, R. Simultaneous Optical and Electrochemical Label-Free Biosensing with ITO-Coated Lossy-Mode Resonance Sensor. Biosens. Bioelectron. 2020, 154, 112050. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Park, K.; Wijesinghe, R.E.; Jeong, H.; Han, S.; Kim, P.; Jeon, M.; Kim, J. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography. Sensors 2016, 16, 1598. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Dong, Y.; Shen, Y.; Zeitler, J.A. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation. J. Pharm. Sci. 2015, 104, 3377–3385. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Abolghasemi, V.; Gan, L.; Zeitler, J.A.; Shen, Y.-C. Investigating Intra-Tablet Coating Uniformity With Spectral-Domain Optical Coherence Tomography. J. Pharm. Sci. 2017, 106, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Aguirre, A.D.; Hsiung, P.-L.; Desai, S.; Herz, P.R.; Pedrosa, M.; Huang, Q.; Figueiredo, M.; Huang, S.-W.; Koski, A.; et al. Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: Preliminary descriptive clinical study correlating images with histology. Endoscopy 2007, 39, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Maria, M.; Gonzalo, I.B.; Feuchter, T.; Denninger, M.; Moselund, P.M.; Leick, L.; Bang, O.; Podoleanu, A. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography. Opt. Lett. 2017, 42, 4744–4747. [Google Scholar] [CrossRef]
- Ko, T.H.; Fujimoto, J.G.; Duker, J.S.; Paunescu, L.A.; Drexler, W.; Baumal, C.R.; Puliafito, C.A.; Reichel, E.; Rogers, A.H.; Schuman, J.S. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 2004, 111, 2033–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, T.H.; Fujimoto, J.G.; Schuman, J.S.; Paunescu, L.A.; Kowalevicz, A.M.; Hartl, I.; Drexler, W.; Wollstein, G.; Ishikawa, H.; Duker, J.S. Comparison of Ultrahigh- and Standard-Resolution Optical Coherence Tomography for Imaging Macular Pathology. Ophthalmology 2005, 112, 1922.e1–1922.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieval, J.Z.; Karp, C.L.; Shousha, M.A.; Galor, A.; Hoffman, R.A.; Dubovy, S.R.; Wang, J. Ultra-High Resolution Optical Coherence Tomography for Differentiation of Ocular Surface Squamous Neoplasia and Pterygia. Ophthalmology 2012, 119, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Yuan, Y.; Shen, M.; Tao, A.; Wang, J.; Lu, F. The Role of Axial Resolution of Optical Coherence Tomography on the Measurement of Corneal and Epithelial Thicknesses. Invest. Ophthalmol. Visual Sci. 2013, 54, 746–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, C.S.; Spring, M.; Liang, H. Ultra-high resolution Fourier domain optical coherence tomography for old master paintings. Opt. Express 2015, 23, 10145–10157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichi, A.; Artesani, A.; Cheung, C.S.; Piccirillo, A.; Comelli, D.; Valentini, G.; Poli, T.; Nevin, A.; Croveri, P.; Liang, H. An exploratory study for the noninvasive detection of metal soaps in paintings through optical coherence tomography. Proc. SPIE Int. Soc. Opt. Eng. 2019, 11058, 1105805. [Google Scholar] [CrossRef]
- Czajkowski, J.; Prykäri, T.; Alarousu, E.; Palosaariet, J.; Myllylä, R. Optical coherence tomography as a method of quality inspection for printed electronics products. Opt. Rev. 2010, 27, 257–262. [Google Scholar] [CrossRef]
- Czajkowski, J.; Fabritius, T.; Ułański, J.; Marszałek, T.; Gazicki-Lipman, M.; Nosal, A.; Śliż, R.; Alarousu, E.; Prykäri, T.; Myllylä, R.; et al. Ultra-high resolution optical coherence tomography for encapsulation quality inspection. Appl. Phys. B 2011, 105, 649–657. [Google Scholar] [CrossRef]
- Lu, H.; Wang, M.R.; Wang, J.; Shen, M. Tear film measurement by optical reflectometry technique. J. Biomed. Opt. 2014, 19, 027001. [Google Scholar] [CrossRef] [Green Version]
- Lu, H. Reflectometry and Optical Coherence Tomography for Noninvasive High Resolution Tear Film Thickness Evaluation and Ophthalmic Imaging; University of Miami: Miami-Dade County, FL, USA, 2017. [Google Scholar]
- Drexler, W.; Fujimoto, J.G. (Eds.) Optical Coherence Tomography: Technology and Applications, 2nd ed.; Springer International Publishing Switzerland: Cham, Switzerland, 2015; pp. 70–75. [Google Scholar]
- Nam, H.S.; Yoo, H. Spectroscopic optical coherence tomography: A review of concepts and biomedical applications. Appl. Spectrosc. Rev. 2018, 53, 91–111. [Google Scholar] [CrossRef]
- Bosschaart, N.; van Leeuwen, T.G.; Aalders, M.C.; Faber, D.J. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography. Biomed. Opt. Express 2013, 4, 2570–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraszewski, M.; Trojanowski, M.; Strąkowski, M.R. Comment on “Quantitative comparison of analysis methods for spectroscopic optical coherence tomography”. Biomed. Opt. Express 2014, 5, 3023–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosschaart, N.; van Leeuwen, T.G.; Aalders, M.C.; Faber, D.J. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: Reply to comment. Biomed. Opt. Express 2014, 5, 3034–3035. [Google Scholar] [CrossRef] [Green Version]
- Leitgeb, R.; Wojtkowski, M.; Kowalczyk, A.; Hitzenberger, C.K.; Sticker, M.; Fercher, A.F. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett. 2000, 25, 820–822. [Google Scholar] [CrossRef]
- dos Santos, V.A.; Schmetterer, L.; Triggs, G.J.; Leitgeb, R.A.; Gröschl, M.; Messner, A.; Schmidl, D.; Garhofer, G.; Aschinger, G.; Werkmeister, R.M. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT. Biomed. Opt. Express 2016, 7, 2650–2670. [Google Scholar] [CrossRef] [Green Version]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 74–101. [Google Scholar]
- Pluciński, J.; Karpienko, K. Fiber Optic Fabry-Pérot Sensors: Modeling versus Measurements Results. Proc. SPIE Int. Soc. Opt. Eng. 2016, 10034, 100340H. [Google Scholar] [CrossRef]
- Pluciński, J.; Karpienko, K. Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes—Modeling and experiments. Proc. SPIE Int. Soc. Opt. Eng. 2016, 10161, 101610F. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Beam intensity profile | Gaussian beam |
Output power of the laser | 10 mW |
Central wavelength | 1290 nm |
Wavelength range | 140 nm |
Item | Value |
---|---|
Light source type | 20 kHz swept-source laser |
Average output power | 10 mW |
Central wavelength | 1290 nm |
Wavelength range | 140 nm |
Axial resolution (in the air) | 12 µm |
Lateral resolution | 15 µm |
Frame rate | >4 fps |
Max. depth imaging range/transverse imaging range | 7 mm/10 mm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamińska, A.M.; Strąkowski, M.R.; Pluciński, J. Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements. Sensors 2020, 20, 5653. https://doi.org/10.3390/s20195653
Kamińska AM, Strąkowski MR, Pluciński J. Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements. Sensors. 2020; 20(19):5653. https://doi.org/10.3390/s20195653
Chicago/Turabian StyleKamińska, Aleksandra M., Marcin R. Strąkowski, and Jerzy Pluciński. 2020. "Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements" Sensors 20, no. 19: 5653. https://doi.org/10.3390/s20195653
APA StyleKamińska, A. M., Strąkowski, M. R., & Pluciński, J. (2020). Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements. Sensors, 20(19), 5653. https://doi.org/10.3390/s20195653