A Ratio Model of L1/L2 Norm for Sound Source Identification
Abstract
:1. Introduction
2. Sound Source Reconstruction Model
3. The Introduction of Ratio Model of Norm
4. Simulations Analysis
4.1. Performance Assessments
4.2. Error Evaluations
5. Experimental Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ballesteros, J.A.; Sarradj, E.; Fernández, M.D.; Geyer, T.; Ballesteros, M.J. Noise source identification with Beamforming in the pass-by of a car. Appl. Acoust. 2015, 93, 106–119. [Google Scholar] [CrossRef]
- Wang, J.; Ma, W. Deconvolution algorithms of phased microphone arrays for the mapping of acoustic sources in an airframe test. Appl. Acoust. 2020, 164, 107283. [Google Scholar] [CrossRef]
- Chiariotti, P.; Martarelli, M.; Castellini, P. Acoustic beamforming for noise source localization – Reviews, methodology and applications. Mech. Syst. Signal. Process. 2019, 120, 422–448. [Google Scholar] [CrossRef]
- Williams, E.G.; Maynard, J.D.; Skudrzyk, E. Sound source reconstructions using a microphone array. J. Acoust. Soc. Am. 1963, 68, 340–344. [Google Scholar] [CrossRef]
- Maynard, J.D.; Williams, E.G.; Lee, Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J. Acoust. Soc. Am. 1985, 78, 1395–1413. [Google Scholar] [CrossRef]
- Zan, M.; Xu, Z.; Huang, L.; Zhang, Z. A Sound Source Identification Algorithm Based on Bayesian Compressive Sensing and Equivalent Source Method. Sensors 2020, 20, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chardon, G.; Daudet, L.; Peillot, A.; Ollivier, F.; Bertin, N.; Gribonval, R. Near-field acoustic holography using sparse regularization and compressive sampling principles. J. Acoust. Soc. Am. 2012, 132, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
- Attendu, J.M.; Ross, A. Sparse regularization for reconstructing transient sources with time domain nearfield acoustical holography. J. Acoust. Soc. Am. 2018, 143, 3796–3806. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Grande, E.; Xenaki, A.; Gerstoft, P. A sparse equivalent source method for near-field acoustic holography. J. Acoust. Soc. Am. 2017, 141, 532–542. [Google Scholar] [CrossRef]
- Gerstoft, P.; Xenaki, A.; Mecklenbräuker, C.F. Multiple and single snapshot compressive beamforming. J. Acoust. Soc. Am. 2015, 138, 2003–2014. [Google Scholar] [CrossRef] [Green Version]
- Hald, J. A comparison of iterative sparse equivalent source methods for near-field acoustical holography. J. Acoust. Soc. Am. 2018, 143, 3758–3769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giri, R.; Srikrishnan, T.A.; Rao, B.D.; Zhang, T. Empirical Bayes based relative impulse response estimation. J. Acoust. Soc. Am. 2018, 143, 3922–3933. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Li, H.; Hu, Y.; Fang, Y. Sound field reconstruction with sparse sampling and the equivalent source method. Mech. Syst. Signal. Process. 2018, 108, 317–325. [Google Scholar] [CrossRef]
- Shi, T.; Liu, Y.; Bolton, J.S. Spatially sparse sound source localization in an under-determined system by using a hybrid compressive sensing method. J. Acoust. Soc. Am. 2019, 146, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Liu, Y.; Zhang, Y.; Xu, L. Sound field reconstruction using inverse boundary element method and sparse regularization. J. Acoust. Soc. Am. 2019, 145, 3154–3162. [Google Scholar] [CrossRef]
- Tan, D.; Chu, Z.; Wu, G. Robust reconstruction of equivalent source method based near-field acoustic holography using an alternative regularization parameter determination approach. J. Acoust. Soc. Am. 2019, 146, EL34–EL38. [Google Scholar] [CrossRef]
- Rahimi, Y.; Wang, C.; Dong, H.; Lou, Y. A Scale-Invariant Approach for Sparse Signal Recovery. SIAM J. Sci. Comput. 2019, 41, A3649–A3672. [Google Scholar] [CrossRef]
- Pham, M.Q.; Oudompheng, B.; Mars, J.I.; Nicolas, B. A Noise-Robust Method with Smoothed ℓ1/ℓ2 Regularization for Sparse Moving-Source Mapping. Signal. Process. 2017, 135, 96–106. [Google Scholar] [CrossRef]
- Wang, C.; Yan, M.; Rahimi, Y.; Lou, Y. Accelerated Schemes for the L1/L2 Minimization. IEEE Trans. Signal. Process. 2020, 68, 2660–2669. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Koopmann, G.H.; Song, L.; Fahnline, J.B. A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am. 1989, 86, 2433–2438. [Google Scholar] [CrossRef]
- Jeans, R.; Mathews, I.C. The wave superposition method as a robust technique for computing acoustic fields. J. Acoust. Soc. Am. 1992, 92, 1156–1166. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, X.; Li, X.; Lei, L.; Kuang, G. Sparse optimization problem with s-difference regularization. Signal. Process. 2020, 168, 107369. [Google Scholar] [CrossRef] [Green Version]
- Qiao, B.; Ao, C.; Mao, Z.; Chen, X. Non-convex sparse regularization for impact force identification. J. Sound. Vib. 2020, 477, 115311. [Google Scholar] [CrossRef]
- Candès, E.; Wakin, M.; Boyd, S. Enhancing Sparsity by Reweighted ℓ1 Minimization. J. Fourier. Anal. App. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends. Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Yu, L.; Antoni, J.; Zhao, H.; Guo, Q.; Wang, R.; Jiang, W. The acoustic inverse problem in the framework of alternating direction method of multipliers. Mech. Syst. Signal. Process. 2021, 149, 107220. [Google Scholar] [CrossRef]
- Hald, J. Fast wideband acoustical holography. J. Acoust. Soc. Am. 2016, 139, 1508–1517. [Google Scholar] [CrossRef]
- Chu, Z.; Yang, Y.; He, Y. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming. J. Sound. Vib. 2015, 344, 484–502. [Google Scholar] [CrossRef]
- Yin, S.; Chu, Z.; Zhang, Y.; Liu, Y. Adaptive reweighting homotopy algorithm based compressive spherical beamforming with spherical microphone arrays. J. Acoust. Soc. Am. 2020, 147, 480–489. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, Z.; Ping, G.; Xu, Z. Resolution enhancement of two-dimensional grid-free compressive beamforming. J. Acoust. Soc. Am. 2018, 143, 3860–3872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Xu, Z.; Zhang, Z.; He, Y. A Ratio Model of L1/L2 Norm for Sound Source Identification. Sensors 2020, 20, 5290. https://doi.org/10.3390/s20185290
Huang L, Xu Z, Zhang Z, He Y. A Ratio Model of L1/L2 Norm for Sound Source Identification. Sensors. 2020; 20(18):5290. https://doi.org/10.3390/s20185290
Chicago/Turabian StyleHuang, Linsen, Zhongming Xu, Zhifei Zhang, and Yansong He. 2020. "A Ratio Model of L1/L2 Norm for Sound Source Identification" Sensors 20, no. 18: 5290. https://doi.org/10.3390/s20185290
APA StyleHuang, L., Xu, Z., Zhang, Z., & He, Y. (2020). A Ratio Model of L1/L2 Norm for Sound Source Identification. Sensors, 20(18), 5290. https://doi.org/10.3390/s20185290