Current-Mode Self-Amplified CMOS Sensor Intended for 2D Temperature Microgradients Measurement and Imaging
Abstract
:1. Introduction
1.1. Thermal Sensor Concept
1.2. Considerations
2. Materials and Methods
2.1. Analog Signals Analysis
2.2. Modes of Operation
2.3. Pixel Design
2.4. Thermal Analysis of Sensor Operation
3. Results and Discussion
- To assess the influence of the matrix biasing on the linearity and sensitivity of the sensor.
- To evaluate the best and worst case for detection errors.
- To evaluate the behavior of the sensor in the frequency domain and its noise performance.
3.1. Linearity, Error and Sensitivity
3.2. Frequency Response and Noise Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tezcan, D.S.; Akin, T.; Engineering, E. An Uncooled microbolometer infrared detector in any standard CMOS technology. In Proceedings of the 10th International Conference on Solid-State Sensors and Actuators (Transducers ’99), Sendai, Japan, 7–10 June 1999; pp. 610–613. [Google Scholar]
- Akin, T. CMOS-MEMS. In Advanced Micro and Nanosystems; Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., Tabata, O., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2005; Volume 2, chapter 10; pp. 479–512. [Google Scholar]
- Rogalski, A. Infrared detectors: Status and trends. Prog. Quantum Electron. 2003, 27, 59–210. [Google Scholar] [CrossRef]
- Eminoglu, S.; Tanrikulu, M.Y.; Akin, T. A low-cost 128 × 128 uncooled infrared detector array in CMOS process. J. Microelectromechanical Syst. 2008, 17, 20–30. [Google Scholar] [CrossRef]
- Kozlowski, L.J.; Kosonocky, W.F. Infrared Detector Arrays. In Handbook of Optics, 3rd ed.; Bass, M., DeCusatis, C.M., Enoch, J., Lakshminarayanan, V., Li, G., MacDonald, C., Mahajan, V.N., Stryland, E.V., Eds.; McGraw-Hill Professional: New York, NY, USA, 2009; chapter 33; pp. 1–34. [Google Scholar]
- Kimata, M.; Tokuda, M.T.; Tsuchinaga, A.; Matsumura, T.; Abe, H.; Tokashiki, N. Vacuum packaging technology for uncooled infrared sensor. IEE J. Trans. Electr. Electron. Eng. 2010, 5, 175–180. [Google Scholar] [CrossRef]
- Chizh, K.V.; Chapnin, V.A.; Kalinushkin, V.P.; Resnik, V.Y.; Storozhevykh, M.S.; Yuryev, V.A. Metal silicide/poly-Si schottky diodes for uncooled microbolometers. Nanoscale Res. Lett. 2013, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, R.; Obana, A.; Kimata, M. Microlens for uncooled infrared array sensor. Electron. Commun. Jpn. 2013, 96, 1–8. [Google Scholar] [CrossRef]
- Siebke, G.; Holik, P.; Schmitz, S.; Tätzner, S.; Thiesler, J.; Steltenkamp, S. The development of a μ-biomimetic uncooled IR-Sensor inspired by the infrared receptors of Melanophila acuminata. Bioinspiration Biomimetics 2015, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Yu, J.; Tang, Z. An Uncooled Infrared Microbolometer Array for Low-Cost Applications. IEEE Photonics Technol. Lett. 2015, 27, 1247–1249. [Google Scholar] [CrossRef]
- Göktaş, H. Towards an ultra-sensitive temperature sensor for uncooled infrared sensing in CMOS-MEMS technology. Micromachines 2019, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Takagawa, Y.; Kimata, M. Elimination of unwanted modes in wavelength-selective uncooled infrared sensors with plasmonic metamaterial absorbers using a subtraction operation. Materials 2019, 12, 3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinowski, P.; Mikołajczyk, J.; Piotrowski, A.; Piotrowski, J. Recent advances in manufacturing of miniaturized uncooled IR detection modules. Semicond. Sci. Technol. 2019, 34. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, S.; Lee, J.; Park, C.; Kim, O.; Xu, B.; Bae, J.; Kang, S. Uncooled short-wave infrared sensor based on PbS quantum dots using ZnO NPs. Nanomaterials 2019, 9, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, T.D.; Doan, A.T.; Ishii, S.; Yokoyama, T.; Sele Ørjan, H.; Ngo, D.H.; Ohki, T.; Ohi, A.; Wada, Y.; Niikura, C.; et al. MEMS-based wavelength-selective bolometers. Micromachines 2019, 10, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosavi, A.; Moezzi, M. A mismatch compensated readout IC for an uncooled microbolometer infrared FPA. Aeu-Int. J. Electron. Commun. 2020, 123, 153263. [Google Scholar] [CrossRef]
- Shlenkevitch, D.; Stolyarova, S.; Blank, T.; Brouk, I.; Nemirovsky, Y. Novel Miniature and Selective Combustion-Type CMOS Gas Sensor for Gas-Mixture Analysis—Part 1: Emphasis on Chemical Aspects. Micromachines 2020, 11, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, R.; Moreno, M.; Torres, A.; Morales, A.; Ponce, A.; Ferrusca, D.; Rangel-Magdaleno, J.; Castro-Ramos, J.; Hernandez-Perez, J.; Cano, E. Fabrication of microbolometer arrays based on polymorphous silicon–germanium. Sensors 2020, 20, 2716. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhou, H.; Qian, K.; Tan, W.; Zhang, Z.; Gu, L.; Yu, Y. RGB-IR cross input and sub-pixel upsampling network for infrared image super-resolution. Sensors 2020, 20, 281. [Google Scholar] [CrossRef] [Green Version]
- Yadav, I.; Jain, S.; Lamba, S.S.; Tomar, M.; Gupta, S.; Gupta, V.; Jain, K.K.; Dutta, S.; Chatterjee, R. Effect of growth and electrical properties of TiOx films on microbolometer design. J. Mater. Sci. Mater. Electron. 2020, 31, 6671–6678. [Google Scholar] [CrossRef]
- Gawron, W.; Martyniuk, P.; Kȩbłowski, A.; Kolwas, K.; Stȩpień, D.; Piotrowski, J.; Madejczyk, P.; Pȩdzińska, M.; Rogalski, A. Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors. Solid-State Electron. 2016, 118, 61–65. [Google Scholar] [CrossRef]
- Cen, Y.; Zhang, J.; Chen, H.; Ding, R. Design of a readout circuit incorporating a 12-bit analog-to-digital converter for cooled infrared focal plane array. Opt. Quantum Electron. 2019, 51, 1–12. [Google Scholar] [CrossRef]
- Bazovkin, V.M.; Varavin, V.S.; Vasil’ev, V.V.; Glukhov, A.V.; Gorshkov, D.V.; Dvoretsky, S.A.; Kovchavtsev, A.P.; Makarov, Y.S.; Marin, D.V.; Mzhelsky, I.V.; et al. A Megapixel Matrix Photodetector of the Middle Infrared Range. J. Commun. Technol. Electron. 2019, 64, 1011–1015. [Google Scholar] [CrossRef]
- Bhan, R.K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 2019, 27, 174–193. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Chen, M.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282. [Google Scholar] [CrossRef]
- Livache, C.; Martinez, B.; Goubet, N.; Gréboval, C.; Qu, J.; Chu, A.; Royer, S.; Ithurria, S.; Silly, M.G.; Dubertret, B.; et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, C.Y.; Chen, Y.; Li, W.; Xie, J.; He, Q.; Tai, Y.C. An integrated system for on-chip temperature gradient interaction chromatography. Sensors Actuators, Phys. 2006, 127, 207–215. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, S.J.; Shih, W.P.; Lin, C.H.; Chang, C.C.; Chang, P.Z. Fabrication of micro temperature sensor and heater in a stainless steel-based micro reformer. In Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS, Shenzhen, China, 5–8 January 2009; pp. 172–175. [Google Scholar] [CrossRef]
- Cubukcu, A.S.; Zernickel, E.; Buerklin, U.; Urban, G.A. A 2D thermal flow sensor with sub-mW power consumption. Sens. Actuat. Phys. 2010, 163, 449–456. [Google Scholar] [CrossRef]
- Chi-Yuan, L.; Chien-Hen, L.; Yi-Man, L. Fabrication of a flexible micro temperature sensor for micro reformer applications. Sensors 2011, 11, 3706–3716. [Google Scholar] [CrossRef]
- Lee, C.Y.; Weng, F.B.; Cheng, C.H.; Shiu, H.R.; Jung, S.P.; Chang, W.C.; Chan, P.C.; Chen, W.T.; Lee, C.J. Use of flexible micro-temperature sensor to determine temperature in situ and to simulate a proton exchange membrane fuel cell. J. Power Sources 2011, 196, 228–234. [Google Scholar] [CrossRef]
- Yarimaga, O.; Lee, S.; Ham, D.Y.; Choi, J.M.; Kwon, S.G.; Im, M.; Kim, S.; Kim, J.M.; Choi, Y.K. Thermofluorescent conjugated polymer sensors for nano- and microscale temperature monitoring. Macromol. Chem. Phys. 2011, 212, 1211–1220. [Google Scholar] [CrossRef]
- Jung, W.; Kim, Y.W.; Yim, D.; Yoo, J.Y. Microscale surface thermometry using SU8/Rhodamine-B thin layer. Sens. Actuat. Phys. 2011, 171, 228–232. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Xu, S. Key issues in microscale temperature sensing with thermocouple array. Adv. Mater. Res. 2012, 422, 29–34. [Google Scholar] [CrossRef]
- Zuck, A.; Kaplan, D.; Kendler, S. A MEMS-based microthermal analysis of explosive materials. Sens. Actuat. Phys. 2013, 199, 129–135. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Itoh, T.; Maeda, R. Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable uv lithography with multilayer alignment for Biomedical Applications. J. Microelectromechanical Syst. 2014, 23, 21–29. [Google Scholar] [CrossRef]
- Maestro, L.M.; Zhang, Q.; Li, X.; Jaque, D.; Gu, M. Quantum-dot based nanothermometry in optical plasmonic recording media. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Binslem, S.A.; Ahmad, M.R.; Awang, Z. Intracellular thermal sensor for single cell analysis-short review. J. Teknol. 2015, 73, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, W.J.; Slinker, K.A.; Volk, B.L.; Koerner, H.; Godar, T.J.; Ehlert, G.J.; Baur, J.W. High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors. ACS Appl. Mater. Interfaces 2015, 7, 27624–27631. [Google Scholar] [CrossRef] [PubMed]
- Hackney, D.A.; Peters, K.J.; Black, R.J.; Costa, J.M.; Moslehi, B. Fiber Bragg gratings as transient thermal gradient sensors. Opt. Eng. 2016, 55, 114102. [Google Scholar] [CrossRef]
- Luhmann, N.; Høj, D.; Piller, M.; Kähler, H.; Chien, M.H.; West, R.G.; Andersen, U.L.; Schmid, S. Ultrathin 2 nm gold as impedance-matched absorber for infrared light. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.H.; Nichol, R. A preovulatory temperature gradient between the isthmus and ampulla of pig oviducts during the phase of sperm storage. J. Reprod. Fertil. 1986, 77, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Radomska, A.; Singhal, S.; Ye, H.; Lim, M.; Mantalaris, A.; Yue, X.; Drakakis, E.M.; Toumazou, C.; Cass, A.E. Biocompatible ion selective electrode for monitoring metabolic activity during the growth and cultivation of human cells. Biosens. Bioelectron. 2008, 24, 435–441. [Google Scholar] [CrossRef]
- Jain, A.; Ness, K.; Goodson, K.E. Theoretical and experimental investigation of spatial temperature gradient effects on cells using a microfabricated microheater platform. Sens. Actuat. B Chem. 2009, 143, 286–294. [Google Scholar] [CrossRef]
- Muddu, R.; Hassan, Y.A.; Ugaz, V.M. Rapid PCR thermocycling using microscale thermal convection. J. Vis. Exp. 2011, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; He, Y.; Wang, Z.; Smith, R.; Shayya, W.; Pei, Y. Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater. Ecol. Eng. 2012, 47, 76–82. [Google Scholar] [CrossRef]
- Ebbesen, C.L.; Bruus, H. Analysis of laser-induced heating in optical neuronal guidance. J. Neurosci. Methods 2012, 209, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.H.; Gadea, J. Cross-talk between free and bound spermatozoa to modulate initial sperm: Egg ratios at the site of fertilization in the mammalian oviduct. Theriogenology 2014, 82, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gan, X.; Li, X.; Gu, M. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Lien, R.C.; Sanford, T.B.; Carlson, J.A.; Dunlap, J.H. Autonomous microstructure EM-APEX floats. Methods Oceanogr. 2016, 17, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Durdevic, L.; Robert, H.M.; Wattellier, B.; Monneret, S.; Baffou, G. Microscale Temperature Shaping Using Spatial Light Modulation on Gold Nanoparticles. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Santos, P.M.; de Lima Monteiro, D.W. Intrinsically Self-Amplified CMOS Image Sensor. ECS Trans. 2009, 23, 537–544. [Google Scholar] [CrossRef]
- Santos, P.M.; de Lima Monteiro, D.W.; Pittet, P. Self-amplified CMOS image sensor using a current-mode readout circuit. In Optical Sensing and Detection III; Berghmans, F., Mignani, A.G., De Moor, P., Eds.; SPIE: Bellingham, DC, USA, 2014; Number 914128; pp. 914218-1–914218-7. [Google Scholar] [CrossRef]
- Akin, T. CMOS-based Thermal Sensors. CMOS–MEMS 2005, 2, 479–512. [Google Scholar]
- Goodson, K.; Jiang, L.; Sinha, S.; Pop, E.; Im, S.; Fletcher, D.; King, W.; Koo, J.m.; Wang, E. Heat Transfer at Small Dimensions MICROSCALE THERMAL ENGINEERING OF ELECTRONIC SYSTEMS Stanford University Stanford, CA 94305-3030. In Proceedings of the Rohsenow Symposium on Future Trends of Heat Transfer, Cambridge, MA, USA, 16 May 2003; pp. 1–8. [Google Scholar]
- Fontaine, M.; Joubert, E.; Latry, O.; Gauthier, C.; Regard, C.; Polaert, H.; Eudeline, P.; Ketata, M. Simultaneous measures of temperature and expansion on electronic compound. In Proceedings of the 2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 20–24 March 2011; Number 1. pp. 203–207. [Google Scholar] [CrossRef]
- He, Q.; Smith, S.; Xiong, G. Thermocouple attachment using epoxy in electronic system thermal measurements-A numerical experiment. In Proceedings of the Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 20–24 March 2011; pp. 280–291. [Google Scholar] [CrossRef]
- Petrosyants, K.O.; Rjabov, N.I. Temperature sensors modeling for smart power ICs. In Proceedings of the Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 20–24 March 2011; pp. 161–165. [Google Scholar] [CrossRef]
- Romano, G.; Riccio, M.; De Falco, G.; Maresca, L.; Irace, A.; Breglio, G. An ultrafast IR thermography system for transient temperature detection on electronic devices. In Proceedings of the 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 9–13 March 2014; pp. 80–84. [Google Scholar] [CrossRef] [Green Version]
- Kumar Ramamoorthy, P.; Bono, A. Measurement and characterization of die temperature sensor. In Proceedings of the 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 9–13 March 2014; pp. 41–44. [Google Scholar] [CrossRef]
- Patricia Daukantas. Still Plenty of Room at the Bottom. Opt. Photonics News 2019, 30, 24. [Google Scholar] [CrossRef]
- Vaibhav, V.; Horbach, J.; Chaudhuri, P. Response of glassy liquids to thermal gradients. Phys. Rev. E 2020, 101, 1–8. [Google Scholar] [CrossRef]
- Zuck, A.; Kendler, S. Visual study of explosive particles during fast thermal analysis. Sens. Actuat. A Phys. 2018, 283, 330–339. [Google Scholar] [CrossRef]
- Proni, J.R.; Newman, F.C.; Rona, D.C.; Drake, D.E.; Berberian, G.A.; Lauter, C.A.; Sellers, R.L. On the use of acoustics for studying suspended oceanic sediment and for determining the onset of the shallow thermocline. Deep.-Sea Res. Oceanogr. Abstr. 1976, 23, 831–837. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F. High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote. Sens. Environ. 2004, 90, 293–307. [Google Scholar] [CrossRef]
- Muench, R.; Padman, L.; Gordon, A.; Orsi, A. A dense water outflow from the Ross Sea, Antarctica: Mixing and the contribution of tides. J. Mar. Syst. 2009, 77, 369–387. [Google Scholar] [CrossRef]
- Takeyoshi Nagai, R.I.A.T. Observations of the Kuroshio Extension by an Autonomous Microstructure Float. Clivar Exch. 2016, 20, 1–15. [Google Scholar]
- Baker, R.J. CMOS: Circuit Design, Layout, and Simulation, 3rd ed.; IEEE Press: Piscataway, NJ, USA, 2010. [Google Scholar]
- Huang, W.; Ghosh, S.; Velusamy, S.; Sankaranarayanan, K.; Skadron, K.; Stan, M.R. Hotspot: A Compact Thermal Modeling Methodology for Early-stage VLSI Design. IEEE Trans. Very Large Scale Integr. Syst. 2006, 14, 501–513. [Google Scholar] [CrossRef]
- McCorquodale, M.S.; O’Day, J.D.; Pernia, S.M.; Carichner, G.a.; Kubba, S.; Brown, R.B. A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J. -Solid-State Circuits 2007, 42, 385–399. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, W.; Ning, N.; Lim, W.M.; Liu, Y.; Yu, Q. A Supply Voltage and Temperature Variation-Tolerant Relaxation Oscillator for Biomedical Systems Based on Dynamic Threshold and Switched Resistors. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2014, 23, 786–790. [Google Scholar] [CrossRef]
- Zhang, X.; Mukadam, M.Y.; Mukhopadhyay, I.; Apsel, A.B. Process Compensation Loops for High Speed Ring Oscillators in Sub-Micron CMOS. IEEE J. Emerg. Sel. Topics Circuits Syst. 2011, 1, 59–70. [Google Scholar] [CrossRef]
- Vita, G.D.; Marraccini, F.; Iannaccone, G. Low-Voltage Low-Power CMOS Oscillator with Low Temperature and Process Sensitivity. In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 2152–2155. [Google Scholar] [CrossRef]
- De Moraes Cruz, C.; De Lima Monteiro, D.W.; Cotta, E.; Lucena, V., Jr.; Souza, A. FPN Attenuation by Reset-Drain Actuation in the Linear-Logarithmic Active Pixel Sensor. Circuits Syst. Regul. Pap. IEEE Trans. 2014, 61, 2825–2833. [Google Scholar] [CrossRef]
Operation Mode | Temperature Difference |
---|---|
Continuous Output | |
1 scene and rest for 1ms |
# of Pixels | Temperature () | Gain (A/V (dB)) | (MHz) | |
---|---|---|---|---|
1 | 25 (Figure 18) | 20.78 (−93.6) | 1120 | |
256 | 25 (Figure 18) | 1260 (−58) | 21.2 | |
80 (Figure 20) | 1000 (−60) | 17.7 | ||
256 | 25 (Figure 19) | 15.1 (−96.4) | 35.3 | |
80 (Figure 20) | 47.8 (−86.4) | 29.9 |
SNR (dB) | DR (dB) | Noise Current (A) | ||||
---|---|---|---|---|---|---|
Temperature | ||||||
Best Case | 84.7 | 84.1 | 76.4 | 75.8 | ||
Worst Case | 66.1 | 65.5 | 57.8 | 57.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, P.M.; Monteiro, D.W.L.; Salles, L.P. Current-Mode Self-Amplified CMOS Sensor Intended for 2D Temperature Microgradients Measurement and Imaging. Sensors 2020, 20, 5111. https://doi.org/10.3390/s20185111
Santos PM, Monteiro DWL, Salles LP. Current-Mode Self-Amplified CMOS Sensor Intended for 2D Temperature Microgradients Measurement and Imaging. Sensors. 2020; 20(18):5111. https://doi.org/10.3390/s20185111
Chicago/Turabian StyleSantos, Patrick M., Davies W. L. Monteiro, and Luciana P. Salles. 2020. "Current-Mode Self-Amplified CMOS Sensor Intended for 2D Temperature Microgradients Measurement and Imaging" Sensors 20, no. 18: 5111. https://doi.org/10.3390/s20185111
APA StyleSantos, P. M., Monteiro, D. W. L., & Salles, L. P. (2020). Current-Mode Self-Amplified CMOS Sensor Intended for 2D Temperature Microgradients Measurement and Imaging. Sensors, 20(18), 5111. https://doi.org/10.3390/s20185111