Instrumented Four Square Step Test in Adults with Transfemoral Amputation: Test-Retest Reliability and Discriminant Validity between Two Types of Microprocessor Knees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Instrumentation
2.4. Data Processing
2.4.1. Timing
2.4.2. Temporal Decomposition
2.4.3. Adaptation to Consider the Prosthetic Side
2.4.4. Stepping Pattern
2.5. Statistics
2.5.1. Reliability Analysis
2.5.2. Comparison between the Microprocessor Knee Systems
3. Results
3.1. Test-Retest Reliability
3.2. Differences between the Microprocessor Knee Systems
4. Discussion
4.1. Test-Retest Reliability
4.2. Difference between Microprocessor Knee Systems
4.3. What Can We Learn from iFSST
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ku, P.X.; Abu Osman, N.A.; Abas, W.A.B.W. Balance control in lower extremity amputees during quiet standing: A systematic review. Gait Posture 2014, 39, 672–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagawa, Y.; Turcot, K.; Armand, S.; Thevenon, A.; Vuillerme, N.; Watelain, E. Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review. Gait Posture 2011, 33, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Beltrami, G.; Zambarbieri, D.T.; Verni, G. Centre of pressure displacements in trans-femoral amputees during gait. Gait Posture 2005, 21, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Cutti, A.G.; Verni, G.; Migliore, G.; Amoresano, A.; Raggi, M. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. J. Neuroeng. Rehabil. 2018, 15, 61. [Google Scholar] [CrossRef] [Green Version]
- Gailey, R.; Allen, K.; Castles, J.; Kucharik, J.; Roeder, M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J. Rehabil. Res. Dev. 2008, 45, 15–29. [Google Scholar] [CrossRef]
- Marinakis, G.N. Interlimb symmetry of traumatic unilateral transtibial amputees wearing two different prosthetic feet in the early rehabilitation stage. J. Rehabil. Res. Dev. 2004, 41, 581–590. [Google Scholar] [CrossRef]
- Highsmith, M.J.; Andrews, C.R.; Millman, C.; Fuller, A.; Kahle, J.T.; Klenow, T.D.; Lewis, K.L.; Bradley, R.C.; Orriola, J.J. Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review. Technol. Innov. 2016, 18, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef]
- Roos, M.A.; Reisman, D.S.; Hicks, G.E.; Rose, W.; Rudolph, K.S. Development of the Modified Four Square Step Test and its reliability and validity in people with stroke. J. Rehabil. Res. Dev. 2016, 53, 403–412. [Google Scholar] [CrossRef]
- Whitney, S.L.; Marchetti, G.F.; Morris, L.O.; Sparto, P.J. The Reliability and Validity of the Four Square Step Test for People with Balance Deficits Secondary to a Vestibular Disorder. Arch. Phys. Med. Rehabil. 2007, 88, 99–104. [Google Scholar] [CrossRef]
- Blennerhassett, J.; Jayalath, V.M. The Four Square Step Test is a Feasible and Valid Clinical Test of Dynamic Standing Balance for Use in Ambulant People Poststroke. Arch. Phys. Med. Rehabil. 2008, 89, 2156–2161. [Google Scholar] [CrossRef] [PubMed]
- Nilsagård, Y.; Lundholm, C.; Denison, E.; Gunnarsson, L.G. Predicting accidental falls in people with multiple sclerosis—A longitudinal study. Clin. Rehab. 2009, 23, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.P.; Earhart, G.M. Four Square Step Test Performance in People with Parkinson Disease. J. Neurol. Phys. Ther. 2013, 37, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, K.E.; Hackney, M.E. The four square step test in individuals with Parkinson’s disease: Association with executive function and comparison with older adults. NeuroRehabilitation 2014, 35, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Dite, W.; Connor, H.J.; Curtis, H.C. Clinical Identification of Multiple Fall Risk Early After Unilateral Transtibial Amputation. Arch. Phys. Med. Rehabil. 2007, 88, 109–114. [Google Scholar] [CrossRef]
- Langford, Z. The Four Square Step Test. J. Physiother. 2015, 61, 162. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.; Barker, K.L. The validity and reliability of the four square step test in different adult populations: A systematic review. Syst. Rev. 2017, 6, 187. [Google Scholar] [CrossRef]
- Boddy, A.; Andrea, C.; Lomaglio, M. Interrater reliability of the Protokinetics Movement Analysis Software and the Zeno Walkway during Four Step Square Test in individuals with Parkinson’s disease. Innov. Clin. Neurosci. 2018, 15, S3–S19. [Google Scholar]
- Highsmith, M.J.; Kahle, J.T.; Wernke, M.M.; Carey, S.L.; Miro, R.M.; Lura, D.J.; Sutton, B.S. Effects of the Genium Knee System on Functional Level, Stair Ambulation, Perceptive and Economic Outcomes In Transfemoral Amputees. Technol. Innov. 2016, 18, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Highsmith, M.J.; Kahle, J.T.; Miro, R.M.; Cress, M.E.; Lura, D.; Quillen, W.S.; Carey, S.L.; Dubey, R.V.; Mengelkoch, L.J. Functional performance differences between the Genium and C-Leg prosthetic knees and intact knees. J. Rehabil. Res. Dev. 2016, 53, 753–766. [Google Scholar] [CrossRef]
- Berg-Poppe, P.; Cesar, G.M.; Tao, H.; Johnson, C.; Landry, J. Concurrent validity between a portable force plate and instrumented walkway when measuring limits of stability. Int. J. Ther. Rehabil. 2018, 25, 272–278. [Google Scholar] [CrossRef]
- Vallabhajosula, S.; Humphrey, S.K.; Cook, A.J.; Freund, J.E. Concurrent Validity of the Zeno Walkway for Measuring Spatiotemporal Gait Parameters in Older Adults. J. Geriatr. Phys. Ther. 2019, 42, E42–E50. [Google Scholar] [CrossRef]
- Clemens, S.M.; Klute, G.K.; Kirk-Sanchez, N.J.; Raya, M.A.; Kim, K.J.; Gaunaurd, I.A.; Gailey, R.S. Temporal-spatial values during a 180° step turn in people with unilateral lower limb amputation. Gait Posture 2018, 63, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.; Downham, D.Y. How to Assess the Reliability of Measurements in Rehabilitation. Am. J. Phys. Med. Rehabil. 2005, 84, 719–723. [Google Scholar] [CrossRef]
- Haley, S.M.; Fragala-Pinkham, M.A. Interpreting Change Scores of Tests and Measures Used in Physical Therapy. Phys. Ther. 2006, 86, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Resnik, L.; Borgia, M. Reliability of Outcome Measures for People With Lower-Limb Amputations: Distinguishing True Change From Statistical Error. Phys. Ther. 2011, 91, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Vrieling, A.; Van Keeken, H.; Schoppen, T.; Otten, E.; Halbertsma, J.; Hof, A.; Postema, K. Gait initiation in lower limb amputees. Gait Posture 2008, 27, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Stirling, L.; Eke, C.; Cain, S.M. Examination of the perceived agility and balance during a reactive agility task. PLoS ONE 2018, 13, e0198875. [Google Scholar] [CrossRef] [Green Version]
- Burkett, B.; Smeathers, J.; Barker, T. Walking and running inter-limb asymmetry for Paralympic trans-femoral amputees, a biomechanical analysis. Prosthet. Orthot. Int. 2003, 27, 36–47. [Google Scholar] [CrossRef] [Green Version]
TFA (n = 20) | |
---|---|
Age, years, mean (SD) | 46.5 (14.2) |
Body Mass Index, kg/m2, mean (SD) | 26.4 (4.2) |
Gender, male, n (%) | 16 (80%) |
Time since amputation, years, mean (SD) | 17.7 (15.6) |
Amputation etiology, n (%) | |
Traumatic | 14 (70%) |
Malignancy | 4 (20%) |
Peripheral vascular disease | 2 (10%) |
Amputation side, n (%) | |
Left | 7 (35%) |
Right | 13 (65%) |
Residual limb length, %, mean (SD) (% of the sound side femur) | 70 (30) |
Hip flexion contracture, degrees, mean (SD) | 12.8 (7.7) |
Amputee Mobility Predictor, mean (SD) | 40.8 (3.6) |
Test 1 Mean (SD) (n = 40) | Test 2 Mean (SD) (n = 40) | Paired t-Test p Value | ICC2,1 (95% CI) | SEM | MDC95 | |
---|---|---|---|---|---|---|
iFSST Total Duration (s) | 11.71 (3.29) | 11.43 (2.98) | 0.102 | 0.97 [0.95–0.99] | 0.54 | 1.51 s |
Sound Side Duration (s) | 8.07 (3.13) | 7.26 (2.91) | 0.000* | 0.94 [0.68–0.98] | 0.74 | 2.05 s |
Prosthetic Side Duration (s) | 6.53 (2.42) | 6.93 (2.25) | 0.092 | 0.90 [0.80–0.95] | 0.74 | 2.05 s |
Duration in Transitions & Squares (% FSST) | ||||||
Tr1–2 Forward | 9.71 (1.39) | 10.00 (1.50) | 0.040* | 0.90 [0.80–0.95] | 0.46 | 1.27% |
Sq2–1 | 2.63 (1.26) | 2.68 (1.47) | 0.824 | 0.79 [0.59–0.89] | 0.63 | 1.73% |
Tr2–3 Right | 9.57 (1.31) | 9.53 (1.07) | 0.764 | 0.84 [0.98–0.92] | 0.48 | 1.32% |
Sq3–1 | 2.72 (1.70) | 2.66 (1.67) | 0.736 | 0.91 [0.83–0.95] | 0.51 | 1.40% |
Tr3–4 Backward | 9.66 (1.45) | 9.90 (1.21) | 0.233 | 0.73 [0.49–0.86] | 0.69 | 1.92% |
Sq4–1 | 4.01 (1.84) | 3.42 (1.72) | 0.020* | 0.77 [0.54–0.88] | 0.85 | 2.37% |
Tr4–1 Left | 9.52 (1.33) | 9.88 (1.33) | 0.075 | 0.73 [0.48–0.86] | 0.69 | 1.92% |
Sq1–2 | 3.70 (2.78) | 3.14 (1.61) | 0.141 | 0.66 [0.36–0.82] | 1.28 | 3.55% |
Tr1–4 Right | 9.88 (1.71) | 9.90 (1.37) | 0.926 | 0.88 [0.77–0.94] | 0.53 | 1.48% |
Sq4–2 | 2.57 (1.28) | 2.71 (1.81) | 0.444 | 0.85 [0.72–0.92] | 0.60 | 1.66% |
Tr4–3 Forward | 9.56 (1.33) | 9.69 (1.26) | 0.275 | 0.90 [0.82–0.95] | 0.41 | 1.14% |
Sq3–2 | 3.41 (1.85) | 3.32 (1.67) | 0.724 | 0.74 [0.50–0.87] | 0.90 | 2.49% |
Tr3–2 Left | 9.54 (1.27) | 9.80 (1.34) | 0.121 | 0.82 [0.65–0.90] | 0.55 | 1.53% |
Sq2–2 | 3.42 (2.38) | 3.04 (1.67) | 0.102 | 0.86 [0.73–0.93] | 0.76 | 2.10% |
Tr2–1 Backward | 10.10 (1.50) | 10.32 (1.32) | 0.157 | 0.87 [0.75–0.93] | 0.64 | 1.78% |
Stepping Pattern | ||||||
Extra Steps Taken (n) | 2.24 (2.50) | 1.79 (2.00) | 0.030* | 0.91 [0.83–0.96] | 0.68 | 1.87 steps |
Changes of Main Support (n) | 17.50 (3.49) | 16.95 (3.66) | 0.096 | 0.91 [0.83–0.95] | 1.07 | 2.97 changes |
COP Pathway’s Efficiency (%) | 50.6 (6.2) | 51.0 (6.1) | 0.496 | 0.92 [0.84–0.96] | 1.74 | 4.8% |
Test 1 Mean (SD) (n = 40) | Test 2 Mean (SD) (n = 40) | Paired t-Test p Value | ICC2, 1 (95% CI) | SEM | MDC95 | |
---|---|---|---|---|---|---|
Lateral Transition toward prosthetics side | ||||||
Swing phase duration (s) | 0.49 (0.09) | 0.50 (0.10) | 0.891 | 0.68 [0.46–0.82] | 0.05 | 0.15 s |
Step width (cm) | 72.9 (6.6) | 72.0 (6.4) | 0.275 | 0.73 [0.54–0.85] | 3.4 | 9.5 cm |
Lateral Transition toward sound side | ||||||
Swing phase duration (s) | 0.72 (0.14) | 0.69 (0.15) | 0.202 | 0.43 [0.14–0.65] | 0.11 | 0.29 s |
Step width (cm) | 75.9 (6.5) | 74.8 (7.6) | 0.046* | 0.89 [0.79–0.94] | 2.3 | 6.5 cm |
Asym. Ratio (toward prosth/toward sound) | ||||||
Swing phase duration | 0.71 (0.17) | 0.74 (0.13) | 0.316 | 0.39 [0.08–0.63] | 0.12 | 0.32 |
Step width | 0.96 (0.06) | 0.96 (0.05) | 0.781 | −0.02 [−0.34–0.31] | 0.06 | 0.15 |
PwTFA with C-Leg MPK (n = 16) | PwTFA with Genium MPK (n = 16) | CLeg versus Genium | ||||
---|---|---|---|---|---|---|
Mean (SD) | [95% CI] | Mean (SD) | [95% CI] | p = | ||
iFSST Total Duration (s) | 11.09 (1.93) | [10.06–12.11] | 10.36 (2.75) | [8.89–11.82] | 0.090 | |
Sound Side Duration (s) | 7.35 (2.04) | [6.27–8.44] | 6.44 (2.51) | [5.10–7.77] | 0.036 | ↓ |
Sound Side Duration (% FSST time) | 65.5 (8.7) | [60.9–70.2] | 60.8 (10.1) | [55.4–66.2] | 0.033 | ↓ |
Prosthetic Side Duration (s) | 6.40 (1.56) | [5.57–7.23] | 6.20 (2.35) | [4.94–7.45] | 0.558 | |
Prosthetic Side Duration (% FSST time) | 57.3 (6.9) | [53.6–61.0] | 58.8 (9.7) | [53.6–64.0] | 0.502 | |
Starting by Prosthetic or Sound Side (n/n) | 11/5 | 11/5 | ||||
Duration in Transitions & Squares (% FSST) | ||||||
Tr1–2 Forward | 9.4 (1.4) | [8.6–10.1] | 10.3 (1.7) | [9.5–11.2] | 0.001 | ↑ |
Sq2–1 | 2.5 (1.2) | [1.8–3.1] | 2.3 (1.3) | [1.6–3.0] | 0.132 | |
Tr2–3 Right | 9.4 (0.9) | [9.0–9.9] | 9.9 (1.0) | [9.4–10.5] | 0.139 | |
Sq3–1 | 2.6 (1.9) | [1.6–3.6] | 2.2 (1.4) | [1.5–3.0] | 0.250 | |
Tr3–4 Backward | 10.0 (1.3) | [9.3–10.7] | 9.7 (1.3) | [9.0–10.4] | 0.244 | |
Sq4–1 | 3.8 (1.2) | [3.2–4.5] | 3.1 (1.7) | [2.2–4.1] | 0.049 | ↓ |
Tr4–1 Left | 9.4 (1.1) | [8.8–9.9] | 10.2 (1.0) | [9.6–10.7] | 0.005 | ↑ |
Sq1–2 | 4.0 (3.3) | [2.2–5.7] | 2.6 (1.4) | [1.9–3.4] | 0.048 | ↓ |
Tr1–4 Right | 9.9 (1.2) | [9.3–10.6] | 10.3 (1.5) | [9.5–11.1] | 0.162 | |
Sq4–2 | 2.3 (0.9) | [1.8–2.8] | 2.4 (1.4) | [1.6–3.2] | 0.808 | |
Tr4–3 Forward | 9.4 (1.1) | [8.8–10.0] | 10.3 (1.4) | [9.6–11.1] | 0.003 | ↑ |
Sq3–2 | 3.3 (2.2) | [2.2–4.5] | 3.3 (1.9) | [2.3–4.3] | 0.910 | |
Tr3–2 Left | 9.8 (1.0) | [9.2–10.3] | 10.4 (1.3) | [9.7–11.1] | 0.018 | ↑ |
Sq2–2 | 3.2 (1.6) | [2.4–4.0] | 2.8 (1.9) | [1.7–3.8] | 0.263 | |
Tr2–1 Backward | 10.9 (1.0) | [1.04–11.5] | 10.1 (1.3) | [9.4–10.8] | 0.055 | |
Transitions/Squares Duration Ratio | 4.0 (1.6) | [3.2–4.9] | 5.2 (2.4) | [3.9–6.5] | 0.003 | ↑ |
Stepping Pattern | ||||||
Extra Steps Taken (n) | 2.25 (1.69) | [1.35–3.15] | 1.38 (1.63) | [0.51–2.24] | 0.014 | ↓ |
Changes of Main Support (n) | 17.25 (2.02) | [16.18–18.32] | 15.75 (3.66) | [13.80–17.70] | 0.029 | ↓ |
COP Pathway’s Efficiency (%) | 51.4 (5.0) | [48.7–54.0] | 52.7 (5.2) | [49.9–55.5] | 0.168 |
PwTFA with C-Leg MPK (n = 16) | PwTFA with Genium MPK (n = 16) | CLeg versus Genium | ||||
---|---|---|---|---|---|---|
Mean (SD) | [95% CI] | Mean (SD) | [95% CI] | p = | ||
Lateral Transition toward prosthetic side | ||||||
Swing phase duration (s) | 0.51 (0.09) | [0.47–0.56] | 0.50 (0.10) | [0.45–0.55] | 0.341 | |
Step width (cm) | 71.7 (6.0) | [68.5–74.9] | 72.4 (6.2) | [69.1–75.7] | 0.705 | |
Lateral Transition toward sound side | ||||||
Swing phase duration (s) | 0.68 (0.11) | [0.63–0.74] | 0.71 (0.17) | [0.63–0.80] | 0.498 | |
Step width (cm) | 74.8 (6.8) | [71.1–78.4] | 76.0 (7.3) | [72.1–79.8] | 0.448 | |
Asym. Ratio (toward prosth/toward sound) | ||||||
Swing phase duration | 0.76 (0.11) | [0.70–0.81] | 0.72 (0.18) | [0.63–0.82] | 0.523 | |
Step width | 0.96 (0.05) | [0.93–0.99] | 0.95 (0.06) | [0.92–0.99] | 0.769 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouelle, A.; Highsmith, M.J. Instrumented Four Square Step Test in Adults with Transfemoral Amputation: Test-Retest Reliability and Discriminant Validity between Two Types of Microprocessor Knees. Sensors 2020, 20, 4782. https://doi.org/10.3390/s20174782
Gouelle A, Highsmith MJ. Instrumented Four Square Step Test in Adults with Transfemoral Amputation: Test-Retest Reliability and Discriminant Validity between Two Types of Microprocessor Knees. Sensors. 2020; 20(17):4782. https://doi.org/10.3390/s20174782
Chicago/Turabian StyleGouelle, Arnaud, and Michael Jason Highsmith. 2020. "Instrumented Four Square Step Test in Adults with Transfemoral Amputation: Test-Retest Reliability and Discriminant Validity between Two Types of Microprocessor Knees" Sensors 20, no. 17: 4782. https://doi.org/10.3390/s20174782