A Decoupled Unified Observation Method of Stochastic Multidimensional Vibration for Wind Tunnel Models
Abstract
:1. Introduction
2. Outline of the Aircraft Model’s Multidimensional Vibration
3. Decoupling Design Principle of the Cantilever Sting
3.1. Vibration Characteristics Analysis Based on Hamilton’s Principle
3.2. Decoupling Design Principle of the Cantilever Sting
4. Unified Observation of Multidimensional Vibration
5. Verification Experiments in the Lab and the Wind Tunnel
5.1. Experimental System
5.2. Impulse Verification Experiments in the Lab
5.3. Verification Experiments in Wind Tunnel
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Chen, L.; Yang, T.; Huang, Y. The design and experiment study on active vibration restraining mechanism of wind tunnel model. In Proceedings of the Inter-Noise & Noise-Con Congress & Conference, Hong Kong, China, 7 December 2017. [Google Scholar]
- Edwards, J.W. National Transonic Facility Model and Tunnel Vibrations. J. Aircr. 2009, 46, 46–52. [Google Scholar] [CrossRef]
- Liu, W.; Ma, X.; Li, X.; Pan, Y.; Wang, F.; Jia, Z. A Novel Vision-Based Pose Measurement Method Considering the Refraction of Light. Sensors 2018, 18, 4348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehren, H.; Gnauert, U.; Wimmel, R.; Refer, G. Validation Testing with the Active Damping System in the European Transonic Wind Tunnel. In Proceedings of the Aerospace Sciences Meeting & Exhibit, Reno, VA, USA, 8–11 January 2001. [Google Scholar]
- Liu, W.; Zhou, M.; Wen, Z.; Yao, Z.; Liu, Y.; Wang, S.; Cui, X.; Li, X.; Liang, B.; Jia, Z. An active damping vibration control system for wind tunnel models. Chin. J. Aeronaut. 2019, 32, 2109–2120. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, W.; Tang, L.; Yao, Z.; Wen, Z.; Liang, B.; Jia, Z. Multidimensional vibration suppression method with piezoelectric control for wind tunnel models. Sensors 2019, 19, 3998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hefer, G. ETW—A facility for high Reynolds number testing. Fluid Mech. Appl. 2003, 73, 157–164. [Google Scholar]
- Schimanski, D.; Hefer, G. Recent Aspects of High Reynolds Number Data Quality and Capabilities at the European Transonic Wind Tunnel. In Proceedings of the Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 10–13 January 2000. [Google Scholar]
- Balakrishna, S.; Houlden, H.; Butler, D.; White, R. Development of a Wind Tunnel Active Vibration Reduction System. In Proceedings of the AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 8–11 January 2007. [Google Scholar]
- Goodliff, S.L.; Jones, G.S.; Butler, D.H.; Balakrishna, S. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System. In Proceedings of the AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Balakrishna, S.; Butler, D.H.; White, R.; Kilgore, W.A. Active Damping of Sting Vibrations in Transonic Wind Tunnel Testing. In Proceedings of the AIAA Aerospace Sciences Meeting, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
- Rivers, M.B.; Balakrishna, S. NASA Common Research Model Test Envelope Extension with Active Sting Damping at NTF. In Proceedings of the AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar]
- Acheson, M.; Balakrishna, S. Effects of Active Sting Damping on Common Research Model Data Quality. In Proceedings of the AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Balakrishna, S.; Butler, D.; Acheson, M.; White, E. Design and Performance of an Active Sting Damper for the NASA Common Research Model. In Proceedings of the AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Shen, X.; Dai, Y.; Chen, M.; Zhang, L.; Yu, L. Active vibration control of the sting used in wind tunnel: Comparison of three control algorithms. Shock Vib. 2018, 2018, 1905049. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dai, Y.; Shen, X.; Kou, X.; Yu, L.; Lu, B. Research on an active pitching damper for transonic wind tunnel tests. Aerosp. Sci. Technol. 2019, 94, 105364. [Google Scholar] [CrossRef]
- Chen, J.; Shen, X.; Tu, F.; Qureshi, E.M. Experimental research on an active sting damper in a low speed acoustic wind tunnel. Shock Vib. 2014, 2014, 164–178. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, C.B. Vibration detection and analysis of wind turbine based on a wireless embedded microcontroller system. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018. [Google Scholar]
- Zaeh, M.F.; Kleinwort, R.; Fagerer, P.; Altintas, Y. Automatic tuning of active vibration control systems using inertial actuators. Cirp Ann. 2017, 66, 365–368. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Yang, L. Active Control of Vibration and Noise of Energy Equipment. IOP Conf. Ser. Earth Environ. Sci. 2020, 547, 022076. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Chen, W.H.; Wang, Y.X.; Nie, X.T. Active vibration control experimental investigation on wind tunnel model support system. J. Mech. Strength 2015, 37, 232–236. [Google Scholar]
- Weiss, J. Model Vibrations and Inertial Bias Measurement in a Transonic Wind Tunnel Test. In Proceedings of the AIAA Aerodynamic Measurement Technology & Ground Testing Conference, Washington, DC, USA, 23–26 June 2008. [Google Scholar]
Measurement Range | Sensitivity | Size | Nonlinearity | Working Temperature | Weight |
---|---|---|---|---|---|
0–100 g | 9.56 mV/g | 3.8 × 11.36 × 6.4 mm | <±1% | −54~121°C | <3 g |
First Mode (Hz) | Second Mode (Hz) | Third Mode (Hz) | |
---|---|---|---|
Stochastic vibration | 25.5 | 94.5 | 112.0 |
Pitch observation component | 25.5 | - | 112.0 |
Yaw observation component | 25.5 | 94.5 | - |
1st Mode (Hz) | 2nd Mode (Hz) | 3rd Mode (Hz) | 4th Mode (Hz) | 5th Mode (Hz) | 6th Mode (Hz) | |
---|---|---|---|---|---|---|
1# stochastic vibration | - | 24.33 | - | - | 84.00 | 89.33 |
2# stochastic vibration | 19.67 | 24.33 | 41.33 | 51.33 | 84.00 | - |
Pitch observation component | 19.67 | 24.33 | 41.33 | 51.33 | - | 89.33 |
Yaw observation component | 19.67 | 24.33 | 41.33 | 51.33 | 84.00 | 89.33 |
1st Mode (Hz) | 2nd Mode (Hz) | 3rd Mode (Hz) | 4th Mode (Hz) | 5th Mode (Hz) | 6th Mode (Hz) | |
---|---|---|---|---|---|---|
1# stochastic vibration | - | 24.00 | 47.67 | 71.67 | 86.67 | 95.33 |
2# stochastic vibration | 19.67 | 24.00 | 47.67 | 71.67 | - | 95.33 |
Pitch observation component | 19.67 | 24.00 | 47.67 | 71.67 | 86.67 | 95.33 |
Yaw observation component | 19.67 | 24.00 | 47.67 | 71.67 | 86.67 | 95.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Liu, W.; Wang, Q.; Liang, B.; Tang, L.; Zhang, Y.; Cui, X. A Decoupled Unified Observation Method of Stochastic Multidimensional Vibration for Wind Tunnel Models. Sensors 2020, 20, 4694. https://doi.org/10.3390/s20174694
Zhou M, Liu W, Wang Q, Liang B, Tang L, Zhang Y, Cui X. A Decoupled Unified Observation Method of Stochastic Multidimensional Vibration for Wind Tunnel Models. Sensors. 2020; 20(17):4694. https://doi.org/10.3390/s20174694
Chicago/Turabian StyleZhou, Mengde, Wei Liu, Qinqin Wang, Bing Liang, Linlin Tang, Yang Zhang, and Xiaochun Cui. 2020. "A Decoupled Unified Observation Method of Stochastic Multidimensional Vibration for Wind Tunnel Models" Sensors 20, no. 17: 4694. https://doi.org/10.3390/s20174694
APA StyleZhou, M., Liu, W., Wang, Q., Liang, B., Tang, L., Zhang, Y., & Cui, X. (2020). A Decoupled Unified Observation Method of Stochastic Multidimensional Vibration for Wind Tunnel Models. Sensors, 20(17), 4694. https://doi.org/10.3390/s20174694