Influence and Compensation of Temperature Effects for Damage Detection and Localization in Aerospace Composites
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Time of Flight Extraction
3.2. Temperature and Dependent Parameters Analysis and Correction
3.3. Polynomial Regression
- Select a reference temperature at which the signal at damaged state must be compensated, preferably corresponding to a baseline dataset recorded at a temperature as close as possible to , in order to avoid large deviations in the following steps.
- Perform an iterative process of comparison within the rest of the available baseline datasets at temperature , with the reference dataset at , for all the propagation paths.
- Extract the correction parameters for every available temperature by minimizing the cost function (5):
- Once the amplitude and phase parameters for each temperature are obtained, the polynomial regression for both factors as a function of temperature was carried out, again using a least-squares regression model. In this case, the polynomial grade was adjusted considering the lowest residual value, resulting in most cases in a third-degree polynomial (Figure 7), although on certain occasions a linear polynomial and quadratic polynomial were obtained.
3.4. Imaging Algorithm
4. Results
4.1. Group Velocity Dependance
4.2. Obtained Parameters from Temperature Model, Regression and Compensation
4.2.1. Calculation of the Temperature-Dependent Parameters
4.2.2. Polynomial Regression for the Temperature-Dependent Parameters
4.3. Damage Detection and Location
4.3.1. Temperatures Selection and Tests Compensation
4.3.2. Damage Detection and Localization Using an Imaging Algorithm
5. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmerr, L.W. Fundamentals of Ultrasonic Nondestructive Evaluation; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Xiao, W.; Howden, S.; Yu, L. Composite bond quality nondestructive evaluation with noncontact Lamb wave system. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation IX, Online Only, CA, USA, 27 April–8 May 2020; Volume 11380, p. 113801M. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Balageas, D.; Fritzen, C.P.; Güemes, A. Structural Health Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 90. [Google Scholar]
- Cantero-Chinchilla, S.; Beck, J.L.; Chiachío, M.; Chiachío, J.; Chronopoulos, D.; Jones, A. Optimal sensor and actuator placement for structural health monitoring via an efficient convex cost-benefit optimization. Mech. Syst. Signal Process. 2020, 144, 106901. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Luo, Y.; Ding, R.; Jiang, F. A piezoelectric sensor network with shared signal transmission wires for structural health monitoring of aircraft smart skin. Mech. Syst. Signal Process. 2020, 141, 106730. [Google Scholar] [CrossRef]
- Moreu, F.; Li, X.; Li, S.; Zhang, D. Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. Front. Built Environ. 2018, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, H.N.; Ren, L.; Jia, Z.G.; Yi, T.H.; Li, D.S. State-of-the-art in structural health monitoring of large and complex civil infrastructures. J. Civ. Struct. Health Monit. 2016, 6, 3–16. [Google Scholar] [CrossRef]
- Randall, R.B. State of the art in monitoring rotating machinery-part 1. Sound Vib. 2004, 38, 14–21. [Google Scholar]
- Randall, R.B. State of the art in monitoring rotating machinery-part 2. Sound Vib. 2004, 38, 10–17. [Google Scholar]
- Herrmann, S.; Wellnitz, J.; Jahn, S.; Leonhardt, S. Structural health monitoring for carbon fiber resin composite car body structures. In Sustainable Automotive Technologies 2013; Springer: Cham, Switzerland, 2014; pp. 75–96. [Google Scholar] [CrossRef]
- Barke, D.; Chiu, W.K. Structural health monitoring in the railway industry: A review. Struct. Health Monit. 2005, 4, 81–93. [Google Scholar] [CrossRef]
- Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric transducer-based structural health monitoring for aircraft applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef]
- Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural Health Monitoring for Advanced Composite Structures: A Review. J. Compos. Sci. 2020, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- AERO—Boeing 787 from the Ground Up. Available online: https://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/ (accessed on 21 May 2020).
- Pora, J. Composite materials in the airbus A380-from history to future. In Proceedings of the 13th International Conference on Composite Materials (ICCM-13), Beijing, China, 25–29 June 2001. [Google Scholar]
- Martins, T.; Infante, V.; Sousa, L.; Fonseca, A.; Antunes, P.J.; Moura, A.M.; Serrano, B. Numerical and experimental study of aircraft structural health. Int. J. Fatigue 2020, 132, 105348. [Google Scholar] [CrossRef]
- Steinweg, D.; Hornung, M. Integrated Aircraft Risk Analysis Framework for Health Monitoring Systems–A Case Study for Structural Health Monitoring. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1453. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Anton, S.R.; Park, G.; Farrar, C.R.; Inman, D.J. On piezoelectric Lamb wave-based structural health monitoring using instantaneous baseline measurements. In Proceedings of the Health Monitoring of Structural and Biological Systems 2007, San Diego, CA, USA, 18–22 March 2007; Volume 6532, p. 65320B. [Google Scholar] [CrossRef]
- Lanza di Scalea, F.; Salamone, S. Temperature effects in ultrasonic Lamb wave structural health monitoring systems. J. Acoust. Soc. Am. 2008, 124, 161–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morteza, T.; Jan, H.; Steven, D.; Koen, V. Visualization of Delaminations in Composite Structures Using a Baseline-Free, Sparse Array Imaging Technique Based on Nonlinear Lamb Wave Propagation. Acta Acust. United Acust. 2017, 103, 987–997. [Google Scholar] [CrossRef]
- Fierro, G.P.M.; Meo, M. A nonlinear ultrasonic hybrid modulation subtraction method for structural health monitoring using sparse arrays. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation IX, Online Only, CA, USA, 27 April–8 May 2020; Volume 11380, p. 113801F. [Google Scholar] [CrossRef]
- Scalerandi, M. Power laws and elastic nonlinearity in materials with complex microstructure. Phys. Lett. A 2016, 380, 413–421. [Google Scholar] [CrossRef]
- Fendzi, C.; Rebillat, M.; Mechbal, N.; Guskov, M.; Coffignal, G. A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves. Struct. Health Monit. 2016, 15, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yi, J.; Xu, Y.; Wang, Y.; Qing, X. Identification and Compensation Technique of Non-Uniform Temperature Field for Lamb Wave-and Multiple Sensors-Based Damage Detection. Sensors 2019, 19, 2930. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Gao, H.; Zhang, G.; Ayhan, B.; Yan, F.; Kwan, C.; Rose, J.L. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 2007, 16, 1208. [Google Scholar] [CrossRef]
- Azuara, G.; Barrera, E.; Ruiz, M.; Bekas, D. Damage Detection and Characterization in Composites Using a Geometric Modification of the RAPID Algorithm. IEEE Sens. J. 2019, 20, 2084–2093. [Google Scholar] [CrossRef]
- PiCeramic Piezoelectric Actuators, “PI_CAT128E_R3_Piezoelectric_Actuators”. Available online: https://static.piceramic.com/fileadmin/user_upload/physik_instrumente/files/CAT/PI_CAT128E_R3_Piezoelectric_Actuators.pdf?_ga=2.137927666.39786750.1550763551-149680812.1550763551 (accessed on 21 May 2020).
- Foote, P. New Guidelines for Implementation of Structural Health Monitoring in Aerospace Applications. SAE Int. J. Aerosp. 2013, 6, 525–533. [Google Scholar] [CrossRef]
- Xu, B.; Yu, L.; Giurgiutiu, V. Advanced methods for time-of-flight estimation with application to Lamb wave structural health monitoring. In Proceedings of the 7th International Workshop on Structural Health Monitoring, Stanford University, Palo Alto, CA, USA, 9–11 September 2009. [Google Scholar]
- Santoni, G.B.; Yu, L.; Xu, B.; Giurgiutiu, V. Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. J. Vib. Acoust. 2007. [Google Scholar] [CrossRef]
- Yuan, F.G. Structural Health Monitoring (SHM) in Aerospace Structures; Woodhead Publishing: Cambridge, UK, 2016; 357p. [Google Scholar]
- Fitzgibbon, A.; Pilu, M.; Fisher, R.B. Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 476–480. [Google Scholar] [CrossRef] [Green Version]
Matrix polymer | Carbon Fiber Material | Number of Layers | Ply/Total Thickness (mm) | Stacking Sequence |
---|---|---|---|---|
M21/194/34%/T800S Unidirectional Prepreg (Hexcel) | Toray T800S | 12 | 0.184/2.208 | [+45/−45/02/90/0]S |
Amplitude (V) | Frequency (kHz) | Number of Cycles | |
---|---|---|---|
Initial | 12 | 250 | 3.5 |
Final | 350 | 5.5 | |
Step | - | 50 | 2.0 |
Treference (°C) | Tcurrent (°C) | Path | Initial Correlation | Final Correlation | Correlation Increment |
---|---|---|---|---|---|
0 | 25 | 4–8 | 0.288 | 0.841 | 0.553 |
3–5 | 0.004 | 0.725 | 0.721 | ||
−10 | 4–8 | 0.862 | 0.967 | 0.105 | |
3–5 | 0.769 | 0.966 | 0.197 | ||
35 | 4–8 | 0.093 | 0.737 | 0.644 | |
3–5 | −0.119 | 0.744 | 0.863 |
Frequency (kHz) | Treference (°C) | Previous Distance to Damage (cm) | Final Distance to Damage (cm) |
---|---|---|---|
250 | 20 | 17.10 | 0.50 |
15 | 4.16 | 0.42 | |
0 | 17.10 | 0.42 | |
300 | 20 | 17.10 | 0.42 |
15 | 16.84 | 0.42 | |
0 | 17.10 | 2.77 | |
350 | 20 | 7.54 | 2.92 |
15 | 7.47 | 0.30 | |
0 | 14.43 | 0.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azuara, G.; Barrera, E. Influence and Compensation of Temperature Effects for Damage Detection and Localization in Aerospace Composites. Sensors 2020, 20, 4153. https://doi.org/10.3390/s20154153
Azuara G, Barrera E. Influence and Compensation of Temperature Effects for Damage Detection and Localization in Aerospace Composites. Sensors. 2020; 20(15):4153. https://doi.org/10.3390/s20154153
Chicago/Turabian StyleAzuara, Guillermo, and Eduardo Barrera. 2020. "Influence and Compensation of Temperature Effects for Damage Detection and Localization in Aerospace Composites" Sensors 20, no. 15: 4153. https://doi.org/10.3390/s20154153
APA StyleAzuara, G., & Barrera, E. (2020). Influence and Compensation of Temperature Effects for Damage Detection and Localization in Aerospace Composites. Sensors, 20(15), 4153. https://doi.org/10.3390/s20154153