A Versatile Illumination System for Real-Time Terahertz Imaging
Abstract
:1. Introduction
2. Experimental Implementation
3. Illumination Pattern
3.1. Principle and Simulations
3.2. Experimental Illumination
4. Imaging Capabilities
4.1. Real-Time Adjustable Imaging
4.2. Enhanced Approaches for Versatile Imaging
4.2.1. Multi-Exposure Iimaging
4.2.2. Linear Illumination Object Scanning
4.3. Illustration to 3D Tomographic Imaging Operating with a Limited Power Source
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SNR | Signal to Noise Ratio |
FPS | Frames Per Second |
OAPM | Off-Axis Parabolic Mirror |
FWHM | Full Width at Half Maximum |
NEP | Noise Equivalent Power |
NDT | Non Destructive Technique |
OSC | Ordered Subset Convex |
QCL | Quantum Cascade Laser |
HDPE | High Density Polyethylene |
PP | Polypropylene |
References
- Ospald, F.; Zouaghi, W.; Beigang, R.; Matheis, C.; Jonuscheit, J.; Recur, B.; Guillet, J.P.; Mounaix, P.; Vleugels, W.; Bosom, P.V.; et al. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt. Eng. 2013, 53, 031208. [Google Scholar] [CrossRef]
- Dong, J.; Kim, B.; Locquet, A.; McKeon, P.; Declercq, N.; Citrin, D.S. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos. Part B Eng. 2015, 79, 667–675. [Google Scholar] [CrossRef]
- Ok, G.; Shin, H.J.; Lim, M.C.; Choi, S.W. Large-scan-area sub-terahertz imaging system for nondestructive food quality inspection. Food Control 2019, 96, 383–389. [Google Scholar] [CrossRef]
- Jördens, C.; Koch, M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng. 2008, 47, 1–5. [Google Scholar] [CrossRef]
- Seco-Martorell, C.; López-Domínguez, V.; Arauz-Garofalo, G.; Redo-Sanchez, A.; Palacios, J.; Tejada, J. Goya’s artwork imaging with Terahertz waves. Opt. Express 2013, 21, 17800. [Google Scholar] [CrossRef] [Green Version]
- Koch-Dandolo, C.L.; Filtenborg, T.; Fukunaga, K.; Skou-Hansen, J.; Jepsen, P.U. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting. Appl. Opt. 2015, 54, 5123. [Google Scholar] [CrossRef]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.J.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Cassar, Q.; Al-Ibadi, A.; Mavarani, L.; Hillger, P.; Grzyb, J.; MacGrogan, G.; Zimmer, T.; Pfeiffer, U.R.; Guillet, J.P.; Mounaix, P. Pilot study of freshly excised breast tissue response in the 300– 600 GHz range. Biomed. Opt. Express 2018, 9, 2930. [Google Scholar] [CrossRef]
- Perraud, J.B.; Obaton, A.F.; Bou-Sleiman, J.; Recur, B.; Balacey, H.; Darracq, F.; Guillet, J.P.; Mounaix, P. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects. Appl. Opt. 2016, 55, 3462–3467. [Google Scholar] [CrossRef]
- Guillet, J.P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of Terahertz Tomography Techniques. J. Infrared Millim. Terahertz Waves 2014, 35, 382–411. [Google Scholar] [CrossRef] [Green Version]
- Perraud, J.B.; Guillet, J.P.; Redon, O.; Hamdi, M.; Simoens, F.; Mounaix, P. Shape-from-focus for real-time terahertz 3D imaging. Opt. Lett. 2019, 44, 483. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y. How many pixels do we need to see things? Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2003, 2659, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Simoens, F.; Meilhan, J.; Nicolas, J.A. Terahertz real-time imaging uncooled arrays based on antenna-coupled bolometers or FET developed at CEA-Leti. J. Infrared Millim. Terahertz Waves 2015, 36, 961–985. [Google Scholar] [CrossRef]
- Dufour, D.; Marchese, L.; Terroux, M.; Oulachgar, H.; Généreux, F.; Doucet, M.; Mercier, L.; Tremblay, B.; Alain, C.; Beaupré, P.; et al. Review of terahertz technology development at INO. J. Infrared Millim. Terahertz Waves 2015, 36, 922–946. [Google Scholar] [CrossRef]
- Andreev, I.; Muravev, V.; Khisameeva, A.; Tsydynzhapov, G.; Kukushkin, I. Imaging of powerful terahertz beams. In Proceedings of the EPJ Web of Conferences, Nizhny Novgorod, Russia, 22–25 October 2018; Volume 195, p. 05001. [Google Scholar]
- Zdanevičius, J.; Bauer, M.; Boppel, S.; Palenskis, V.; Lisauskas, A.; Krozer, V.; Roskos, H.G. Camera for high-speed THz imaging. J. Infrared Millim. Terahertz Waves 2015, 36, 986–997. [Google Scholar] [CrossRef]
- Hack, E.; Valzania, L.; Gäumann, G.; Shalaby, M.; Hauri, C.P.; Zolliker, P. Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging. Sensors 2016, 16, 221. [Google Scholar] [CrossRef] [Green Version]
- Creeden, D.; McCarthy, J.C.; Ketteridge, P.A.; Southward, T.; Komiak, J.J.; Chicklis, E.P. Real-Time Terahertz Imaging System for the Detection of Concealed Objects. Opt. Soc. Am. 2007. [Google Scholar] [CrossRef]
- Marchese, L.E.; Terroux, M.; Dufour, D.; Bolduc, M.; Chevalier, C.; Généreux, F.; Jerominek, H.; Bergeron, A. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera. In Proceedings of the Micro- and Nanotechnology Sensors, Systems, and Applications VI, Baltimore, MD, USA, 5–9 May 2014. [Google Scholar] [CrossRef]
- Li, Q.; Ding, S.H.; Yao, R.; Wang, Q. Real-time terahertz scanning imaging by use of a pyroelectric array camera and image denoising. J. Opt. Soc. Am. 2010, 27, 2381–2386. [Google Scholar] [CrossRef]
- Buchanan, K.W. Real Time Imaging Analysis Using a Terahertz Quantum Cascade Laser and a Microbolometer Focal Plane Array. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2008. [Google Scholar]
- Behnken, B.N.; Karunasiri, G.; Chamberlin, D.R.; Robrish, P.R.; Faist, J. Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera. Opt. Lett. 2008, 33, 440. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.K.T.; Chen, X.; Svensen, O.; Akram, M.N. Speckle reduction in laser projection using a dynamic deformable mirror. Opt. Express 2014, 22, 11152. [Google Scholar] [CrossRef] [Green Version]
- Simoens, F.; Dussopt, L.; Meilhan, J.; Nicolas, J.A.; Monnier, N.; Siligaris, A.; Hiberty, B.; Perraud, J.B.; Mounaix, P.; Lalanne-Dera, J.; et al. Towards industrial applications of terahertz real-time imaging. In Proceedings of the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, San Francisco, CA, USA, 27 January–1 February 2018; pp. 97–107. [Google Scholar] [CrossRef]
- Oda, N.; Hosako, I.; Ishi, T.; Minamide, H.; Otani, C.; Sekine, N. The need of terahertz cameras for standardizing sensitivity measurements. J. Infrared Millim. Terahertz Waves 2014, 35, 671–685. [Google Scholar] [CrossRef]
- Simoens, F. THz Bolometer Detectors. In Physics and Applications of Terahertz Radiation; Perenzoni, M., Paul, D.J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 35–75. [Google Scholar] [CrossRef]
- Moon, S.; Lee, S.W.; Rubinstein, M.; Wong, B.J.; Chen, Z. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Opt. Express 2010, 18, 21183–21197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.Z.; Muir, R.D.; Newman, J.A.; Carlsen, M.S.; Sreehari, S.; Doerge, C.; Begue, N.J.; Everly, R.M.; Bouman, C.A.; Simpson, G.J. High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories. Opt. Express 2014, 22, 24224–24234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.W.; Clayton, G.M. Lissajous-like scan pattern for a gimballed LIDAR. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 8–11 July 2014; pp. 1171–1176. [Google Scholar]
- Hoy, C.L.; Durr, N.J.; Ben-Yakar, A. Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information. Appl. Opt. 2011, 50, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Greenslade, T.B. Adventures with Lissajous Figures; Morgan Claypool Publishers: San Rafael, CA, USA, 2018; pp. 2053–2571. ISBN 978-1-6432-7007-4. [Google Scholar] [CrossRef]
- Marchetti, F. Spectral Filtering for the Resolution of the Gibbs Phenomenon in MPI Applications by LISSAJOUS Sampling. Master’s Thesis, Padua University, Padova, Italy, 2016. [Google Scholar]
- Méndez, R.; Castelló, E.; Ríos Viqueira, J.R.; Flores, J. A New Calibration Process for a Homogeneous Cyclorama Illumination in Virtual TV Sets. Appl. Sci. 2019, 9, 2020. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, B.; Wang, S.; Gray, D.; Abbot, D.; Zhang, X.C. T-ray computed tomography. Opt. Lett. 2002, 27, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Recur, B.; Guillet, J.P.; Manek-Hönninger, I.; Delagnes, J.C.; Benharbone, W.; Desbarats, P.; Domenger, J.P.; Canioni, L.; Mounaix, P. Propagation beam consideration for 3D THz computed tomography. Opt. Express 2012, 20, 5817. [Google Scholar] [CrossRef]
- Tepe, J.; Jan, N.A.; Schuster, T.; Littau, B. A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography. Inverse Prob. Sci. Eng. 2016, 25, 1448–1473. [Google Scholar] [CrossRef] [Green Version]
- Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.B.; Guillet, J.P.; Kingston, A.; Mounaix, P. Ordered subsets convex algorithm for 3D terahertz transmission tomography. Opt. Express 2014, 22, 23299. [Google Scholar] [CrossRef] [Green Version]
- Balacey, H.; Recur, B. Noctylio—3D Imaging Software; Noctylio: Bordeaux, France, 2014; Available online: http://www.noctylio.com/index.html (accessed on 12 July 2020).
- Rogalski, A. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 2010, 18, 121–136. [Google Scholar] [CrossRef]
- Pagies, A.; Ducournau, G.; Lampin, J. Progress in continuous wave THz molecular laser optically pumped by a quantum cascade laser. In Proceedings of the 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar]
- Idehara, T.; Sabchevski, S.P.; Glyavin, M.; Mitsudo, S. The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging. Appl. Sci. 2020, 10, 980. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perraud, J.-B.; Chopard, A.; Guillet, J.-P.; Gellie, P.; Vuillot, A.; Mounaix, P. A Versatile Illumination System for Real-Time Terahertz Imaging. Sensors 2020, 20, 3993. https://doi.org/10.3390/s20143993
Perraud J-B, Chopard A, Guillet J-P, Gellie P, Vuillot A, Mounaix P. A Versatile Illumination System for Real-Time Terahertz Imaging. Sensors. 2020; 20(14):3993. https://doi.org/10.3390/s20143993
Chicago/Turabian StylePerraud, Jean-Baptiste, Adrien Chopard, Jean-Paul Guillet, Pierre Gellie, Antoine Vuillot, and Patrick Mounaix. 2020. "A Versatile Illumination System for Real-Time Terahertz Imaging" Sensors 20, no. 14: 3993. https://doi.org/10.3390/s20143993