Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Material and Fungal Inoculation
2.2. MSI—Image Acquisition and Analysis
2.3. Inoculum Verification
2.4. Models for Seed Health Classification
3. Results
3.1. Spectral Overview of Healthy and Unhealthy Black Oat Seeds
3.2. Seed Health Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martínez-Villaluenga, C.; Peñas, E. Health benefits of oat: Current evidence and molecular mechanisms. Curr. Opin. Food Sci. 2017, 14, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lebas, F. Black oat (Avena strigosa). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. 2015. Available online: https://www.feedipedia.org/node/581 (accessed on 1 June 2020).
- Kist, B.B.; Santos, C.E.; Carvalho, C.; Beling, R.R. Anuário brasileiro de sementes 2019. Editora Gazeta Santa Cruz: Santa Cruz do Sul, Brazil, 2019. Available online: http://www.editoragazeta.com.br/sitewp/wp-content/uploads/2019/08/SEMENTES_2019.pdf (accessed on 1 June 2020).
- Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos: Safra 2019–2020. Conab: Brasília, Brazil, 2018; 7. Available online: https://www.conab.gov.br/component/k2/item/download/31802_7ba8b57a67345b0bf2f9c691cd65fdf6 (accessed on 1 June 2020).
- Carmona, M.A.; Zweegman, J.; Reis, E.M. Detection and transmission of Drechslera avenae from oat seed. Fitopatol. Bras. 2004, 29, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Lângaro, N.C.; Reis, E.M.; Floss, E.L. Detection of Drechslera avenae in oat seeds. Fitopatol. Bras. 2001, 26, 745–748. [Google Scholar]
- Tola, M.; Kebede, B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric. 2016, 2, 1191103. [Google Scholar] [CrossRef]
- Husseina, L.T.; Saadullaha, A.A.M. Mycoflora and incidence of aflatoxin in wheat seeds from Duhok province, Kurdistan region of Iraq. Sci. J. Univ. Zakho. 2018, 6, 78–81. [Google Scholar]
- Atri, A.; Tiwana, U.S. Effect of seed treatment and foliar spray on leaf blight of fodder oat in Punjab. Phytoparasitica 2019, 47, 723–731. [Google Scholar] [CrossRef]
- Pille, S.; Mati, K. Timing of fungicide application for profitable disease management in oat (Avena sativa L.). Zemdirbyste 2011, 98, 167–174. [Google Scholar]
- ElMasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An Overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boelt, B.; Shrestha, S.; Salimi, Z.; Jørgensen, J.R.; Nicolaisen, M.; Carstensen, J.M. Multispectral imaging—A new tool in seed quality assessment? Seed Sci. Res. 2018, 28, 1–7. [Google Scholar] [CrossRef]
- Jørgensen, J.R.; Shrestha, S. Detection of Fusarium in wheat by multispectral Imaging. In Proceedings of the Final COBRA Conference, Vingsted, Denmark, 24–25 November 2015. [Google Scholar]
- Shrestha, S.; Deleuran, L.C.; Olesen, M.H.; Gislum, R. Use of Multispectral imaging in varietal identification of tomato. Sensors 2015, 15, 4496–4512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, M.H.; Carstensen, J.M.; Boelt, B. Multispectral imaging as a potential tool for seed health testing of spinach (Spinacia oleracea L.). Seed Sci. Technol. 2011, 39, 140–150. [Google Scholar] [CrossRef]
- Vrešak, M.; Olesen, M.H.; Gislum, R.; Bavec, F.; Jørgensen, J.R. The use of image-spectroscopy technology as a diagnostic method for seed health testing and variety identification. PLoS ONE 2016, 11, 1–10. [Google Scholar] [CrossRef]
- Silva, F.F.; Castro, E.M.; Moreira, S.I.; Ferreira, T.C.; Lima, A.E.; Alves, E. Emergence and ultrastructural analysis of soybean seedlings inoculated with Sclerotinia sclerotiorum under the application of Trichoderma harzianum. Summa Phytopathol. 2017, 43, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Albregtsen, F.; Nielsen, B. Texture classification based on cooccurrence of gray level run length matrices. Aust. J. Intell. Info. Process. Syst. 2000, 6, 38–45. [Google Scholar]
- Chu, A.; Sehgal, C.M.; Greenleaf, J.F. Use of gray value distribution of run lengths for texture analysis. Pattern Recognit. Lett. 1990, 11, 415–419. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2019. Available online: http://www.r-project.org/index.html (accessed on 8 May 2020).
- Shahin, M.A.; Symons, S.J. Detection of Fusarium damage in Canadian wheat using visible/near-infrared hyperspectral imaging. J. Food Meas. Charact. 2012, 6, 3–11. [Google Scholar] [CrossRef]
- Fuerst, E.P.; Okubara, P.A.; Anderson, J.V.; Morris, C.F. Polyphenol oxidase as a biochemical seed defense mechanism. Front. Plant Sci. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klukkert, M.; Wu, J.X.; Rantanen, J.; Carstensen, J.M.; Rades, T.; Leopold, C.S. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes. Eur. J. Pharm. Sci. 2016, 90, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaillais, B.; Perrin, E.; Mangavel, C.; Bertrand, D. Characterization of the desiccation of wheat kernels by multivariate imaging. Planta 2011, 233, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Jue, T.; Masuda, K. Application of Near Infrared Spectroscopy in Biomedicine; Springer: New York, NY, USA, 2013. [Google Scholar]
- Sendin, K.; Manley, M.; Williams, P.J. Classification of white maize defects with multispectral imaging. Food Chem. 2018, 243, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Del Fiore, A.; Reverberi, M.; Ricelli, A.; Pinzari, F.; Serranti, S.; Fabbri, A.A.; Bonifazie, G.; Fanelli, C. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. J. Food Microbiol. 2010, 144, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Dammer, K.H.; Möller, B.; Rodemann, B.; Heppner, D. Detection of head blight (Fusarium sp.) in winter wheat by color and multispectral image analyzes. Crop Prot. 2011, 30, 420–428. [Google Scholar] [CrossRef]
- Jaillais, B.; Roumet, P.; Pinson-Gadais, L.; Bertrand, D. Detection of Fusarium head blight contamination in wheat kernels by multivariate imaging. Food Control. 2015, 54, 250–258. [Google Scholar] [CrossRef]
- Shrestha, S.; Knapič, M.; Žibrat, U.; Deleuran, L.C.; Gislum, R. Single seed near-infrared hyperspectral imaging in determining tomato (Solanum lycopersicum L.) seed quality in association with multivariate data analysis. Sens. Actuators B Chem. 2016, 237, 1027–1034. [Google Scholar] [CrossRef]
Treatment1 | Training Set (n = 480) | ||||
---|---|---|---|---|---|
NIa | I.b 24 h | I. 72 h | I. 120 h | % correct | |
NI | 98 | 18 | 3 | 1 | 81.67 |
I. 24 h | 16 | 93 | 11 | 0 | 77.50 |
I. 72 h | 7 | 11 | 93 | 9 | 77.50 |
I. 120 h | 5 | 3 | 11 | 101 | 84.17 |
Overall Accuracy | 0.80 | ||||
Kappa | 0.74 | ||||
Treatment | Testing Set (n = 320) | ||||
NIa | I.b 24 h | I. 72 h | I. 120 h | % correct | |
NI | 58 | 19 | 2 | 1 | 72.50 |
I. 24 h | 22 | 41 | 15 | 2 | 51.25 |
I. 72 h | 3 | 6 | 66 | 5 | 82.50 |
I. 120 h | 1 | 2 | 8 | 69 | 86.25 |
Overall Accuracy | 0.73 | ||||
Kappa | 0.64 |
Treatment 1 | Training Set (n = 480) | ||||
---|---|---|---|---|---|
NI a | I. b 24 h | I. 72 h | I. 120 h | % correct | |
NI | 103 | 16 | 1 | 0 | 85.83 |
I. 24 h | 12 | 101 | 6 | 1 | 84.17 |
I. 72 h | 3 | 9 | 104 | 4 | 86.67 |
I. 120 h | 0 | 1 | 3 | 116 | 96.67 |
Overall Accuracy | 0.88 | ||||
Kappa | 0.84 | ||||
Treatment | Testing Set (n = 320) | ||||
NI a | I. b 24 h | I. 72 h | I. 120 h | % correct | |
NI | 66 | 12 | 2 | 0 | 82.5 |
I. 24 h | 8 | 62 | 10 | 0 | 77.5 |
I. 72 h | 1 | 12 | 66 | 1 | 82.5 |
I. 120 h | 0 | 0 | 0 | 80 | 100 |
Overall Accuracy | 0.86 | ||||
Kappa | 0.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
França-Silva, F.; Rego, C.H.Q.; Gomes-Junior, F.G.; Moraes, M.H.D.d.; Medeiros, A.D.d.; Silva, C.B.d. Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging. Sensors 2020, 20, 3343. https://doi.org/10.3390/s20123343
França-Silva F, Rego CHQ, Gomes-Junior FG, Moraes MHDd, Medeiros ADd, Silva CBd. Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging. Sensors. 2020; 20(12):3343. https://doi.org/10.3390/s20123343
Chicago/Turabian StyleFrança-Silva, Fabiano, Carlos Henrique Queiroz Rego, Francisco Guilhien Gomes-Junior, Maria Heloisa Duarte de Moraes, André Dantas de Medeiros, and Clíssia Barboza da Silva. 2020. "Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging" Sensors 20, no. 12: 3343. https://doi.org/10.3390/s20123343
APA StyleFrança-Silva, F., Rego, C. H. Q., Gomes-Junior, F. G., Moraes, M. H. D. d., Medeiros, A. D. d., & Silva, C. B. d. (2020). Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging. Sensors, 20(12), 3343. https://doi.org/10.3390/s20123343