Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Bacillus Thuringiensis Spores
2.3. Preparation of TCDA-NHS
2.4. Preparation of PDA Liposomes for Bacillus Thuringiensis Spore Detection
2.5. Preparation of a PDA Paper Sensor for Bacillus Thuringiensis Spore Detection
2.6. Incubating the PDA Paper Strips in Bacillus Thuringiensis Spore Solution
3. Results and Discussion
3.1. Detection of BT Spores with PDA-Aptamers Suspended in Solution
3.2. Detection of BT Spores with PDA-Aptamer Immobilized on PVDF Paper Strips
3.3. Specificity of the PDA-Aptamer Paper Strip
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, W.; Kim, D.; Back, S.; Lee, Y.-S.; Abari, A.H.; Kim, J. Removal of Ni2+ and Cd2+ by surface display of polyhistidine on bacillus subtilis spore using CotE anchor protein. Biotechnol. Bioprocess Eng. 2019, 24, 375–381. [Google Scholar] [CrossRef]
- Makino, S.-I.; Cheun, H.I.; Watarai, M.; Uchida, I.; Takeshi, K. Detection of anthrax spores from the air by real-time PCR. Lett. Appl. Microbiol. 2001, 33, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Kuske, C.R.; Banton, K.L.; Adorada, D.L.; Stark, P.C.; Hill, K.K.; Jackson, P.J. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 1998, 64, 2463–2472. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.B.; Tian, B.; Zhang, Z.P.; Wang, X.Y.; Fleming, J.; Bi, L.J.; Yang, R.F.; Zhang, X.E. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “Road Closure”. Biosens. Bioelectron. 2015, 67, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Ikanovic, M.; Rudzinski, W.E.; Bruno, J.G.; Allman, A.; Carrillo, M.P.; Dwarakanath, S.; Bhahdigadi, S.; Rao, P.; Kiel, J.L.; Andrews, C.J. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis Spores. J. Fluoresc. 2007, 17, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins (Basel) 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.; Gómez, I.; Porta, H.; García-Gómez, B.I.; Rodriguez-Almazan, C.; Pardo, L.; Soberón, M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 2013, 6, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.P. The mammalian safety of bacillus thuringiensis- based insecticides. J. Invertebr. Pathol. 2001, 77, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Then, C.; Bauer-Panskus, A. Possible health impacts of Bt toxins and residues from spraying with complementary herbicides in genetically engineered soybeans and risk assessment as performed by the European Food Safety Authority EFSA. Environ. Sci. Eur. 2017, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, C.P.; de Soares, N.F.F.; Fontes, E.A.F.; de Oliveira, T.V.; Filho, A.M.M. Behaviour of polydiacetylene vesicles under different conditions of temperature, pH and chemical components of milk. Food Chem. 2012, 135, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zawistowski, A.; Ehrmann, M.; Yi, T.; Schmuck, C. Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J. Am. Chem. Soc. 2011, 133, 9720–9723. [Google Scholar] [CrossRef]
- Kolusheva, S.; Shahal, T.; Jelinek, R. Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 2000, 39, 15851–15859. [Google Scholar] [CrossRef]
- Jung, Y.K.; Kim, T.W.; Park, H.G.; Soh, H.T. Specific colorimetric detection of proteins using bidentate aptamer-conjugated polydiacetylene (PDA) liposomes. Adv. Funct. Mater. 2010, 20, 3092–3097. [Google Scholar] [CrossRef]
- Lee, J.; Jun, H.; Kim, J. Polydiacetylene-liposome microarrays for selective and sensitive mercury(II) detection. Adv. Mater. 2009, 21, 3674–3677. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Deng, J.; Jiang, L. Simple and highly sensitive detection of hepatotoxin microcystin-LR via colorimetric variation based on polydiacetylene vesicles. Sens. Actuators B Chem. 2010, 145, 713–719. [Google Scholar] [CrossRef]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.L.; Li, J.R.; Jiang, L. Chromatic immunoassay based on polydiacetylene vesicles. Colloids Surf. B Biointerfaces 2004, 38, 29–33. [Google Scholar] [CrossRef]
- Rozner, S.; Kolusheva, S.; Cohen, Z.; Dowhan, W.; Eichler, J.; Jelinek, R. Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay. Anal. Biochem. 2003, 319, 96–104. [Google Scholar] [CrossRef]
- Kuriyama, K.; Kikuchi, H.; Kajiyama, T. Chromatic phase of polydiacetylene langmuir−blodgett film. Langmuir 1998, 14, 1130–1138. [Google Scholar] [CrossRef]
- Lim, M.C.; Shin, Y.J.; Jeon, T.J.; Kim, H.Y.; Kim, Y.R. Microbead-assisted PDA sensor for the detection of genetically modified organisms. Anal. Bioanal. Chem. 2011, 400, 777–785. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Yin, X.; Ding, B.; Sun, G.; Ke, T.; Chen, J.; Yu, J. Colorimetric strips for visual lead ion recognition utilizing polydiacetylene embedded nanofibers. J. Mater. Chem. A 2014, 2, 18304–18312. [Google Scholar] [CrossRef]
- Wen, J.T.; Viravathana, P.; Ingel, B.; Roper, C.; Tsutsui, H. Polydiacetylene-coated sensor strip for immunochromatic detection of Xylella fastidiosa subsp. fastidiosa. SLAS Technol. Transl. Life Sci. Innov. 2017, 22, 406–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.P.; Cho, E.; Lee, S.C.; Kim, T.; Song, B.; Lee, I.S.; Jung, S. Detection of foot-and-mouth disease virus using a polydiacetylene immunosensor on solid-liquid phase. Macromol. Mater. Eng. 2018, 303, 1700640. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, M.A.; Maharani, D.A.; Purwanto, D.A.; Kuswandi, B.; Yuwono, M. Simple and sensitive paper-based colorimetric biosensor for determining total polyphenol content of the green tea beverages. Biotechnol. Bioprocess Eng. 2020, 9, 255–263. [Google Scholar] [CrossRef]
- Seo, H.; Singha, S.; Ahn, K.H. Ratiometric fluorescence detection of anthrax biomarker with Eu III -EDTA functionalized mixed Poly(diacetylene) liposomes. Asian J. Org. Chem. 2017, 6, 1257–1263. [Google Scholar] [CrossRef]
- Pindzola, B.A.; Nguyen, A.T.; Reppy, M.A. Antibody-functionalized polydiacetylene coatings on nanoporous membranes for microorganism detection. Chem. Commun. 2006, 906. [Google Scholar] [CrossRef]
- Drobniewski, F.A. The safety of Bacillus species as insect vector control agents. J. Appl. Bacteriol. 1994, 76, 101–109. [Google Scholar] [CrossRef]
- Griffiths, M.W.; Schraft, H. Bacillus cereus food poisoning. Foodborne Dis. 2017, 395–405. [Google Scholar] [CrossRef]
- Park, J.; Lim, M.-C.; Ryu, H.; Shim, J.; Kim, S.M.; Kim, Y.-R.; Jeon, T.-J. Nanopore based detection of Bacillus thuringiensis HD-73 spores using aptamers and versatile DNA hairpins. Nanoscale 2018, 10, 11955–11961. [Google Scholar] [CrossRef]
- Nickerson, K.W.; Julian, G.S.; Bulla, L.A. Physiology of sporeforming bacteria associated with Insects: Radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl. Microbiol. 1974, 28, 129–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.T.; Bohorquez, K.; Tsutsui, H. Polydiacetylene-coated polyvinylidene fluoride strip aptasensor for colorimetric detection of zinc(II). Sens. Actuators B Chem. 2016, 232, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, H.Y.; Lee, S.H.; Ahn, D.J.; Ahn, K.-D.; Kim, J.-M. Micropatterning of diacetylenic liposomes on glass surfaces. Mater. Sci. Eng. C 2004, 24, 157–161. [Google Scholar] [CrossRef]
- Okada, S.; Peng, S.; Spevak, W.; Charych, D. Color and chromism of polydiacetylene vesicles. Acc. Chem. Res. 1998, 31, 229–239. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; You, T.; Jang, H.; Ryu, H.; Lee, E.-S.; Oh, M.-H.; Huh, Y.S.; Kim, S.M.; Jeon, T.-J. Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores. Sensors 2020, 20, 3124. https://doi.org/10.3390/s20113124
Zhou C, You T, Jang H, Ryu H, Lee E-S, Oh M-H, Huh YS, Kim SM, Jeon T-J. Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores. Sensors. 2020; 20(11):3124. https://doi.org/10.3390/s20113124
Chicago/Turabian StyleZhou, Chaoge, Taeyeong You, Huisoo Jang, Hyunil Ryu, Eun-Seon Lee, Mi-Hwa Oh, Yun Suk Huh, Sun Min Kim, and Tae-Joon Jeon. 2020. "Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores" Sensors 20, no. 11: 3124. https://doi.org/10.3390/s20113124
APA StyleZhou, C., You, T., Jang, H., Ryu, H., Lee, E.-S., Oh, M.-H., Huh, Y. S., Kim, S. M., & Jeon, T.-J. (2020). Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores. Sensors, 20(11), 3124. https://doi.org/10.3390/s20113124