BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification
Abstract
:1. Introduction
2. Proposed BLESeis
2.1. Hardware Configuration
2.2. Sensing Task
2.3. Seismic Event Detection Task
2.4. BLE for Seismic Event Notification
- Company ID (2-Byte): Identifier of the manufacturer of a BLESeis (e.g., BS (0x4353))
- GPS coordinate: (16-Byte): GPS latitude (8-Byte) and longitude (8-Byte) of the BLESeis (e.g., Lat: 37.503640480778266, Long: 126.95702612400056 for Chung-Ang University, Seoul, Korea)
- PGA (2-Byte): Maximum measured acceleration in mg unit. (e.g., 34)
- Level (2-Byte): MMI scale of PGA multiplied by 10
- TX (1-Byte): TX power level, indicating the signal strength of the BLE device when transmitted
3. Numerical Validation
3.1. Numerical Setup
3.2. STA/LTA Trigger
3.3. Performance of the Proposed Seismic Event Detection
4. Experimental Validation
4.1. Ambient Vibration Test on BLESeis
4.2. Shaking Table Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naito, S.; Azuma, H.; Senna, S.; Yoshizawa, M.; Nakamura, H.; Hao, K.X.; Fujiwara, H.; Hirayama, Y.; Yuki, N.; Yoshida, M. Development and testing of a mobile application for recording and analyzing seismic data. J. Disaster Res. 2013, 8, 990–1000. [Google Scholar] [CrossRef]
- Allen, R.M.; Gasparini, P.; Kamigaichi, O.; Bose, M. The status of earthquake early warning around the world: An introductory overview. Seismol. Res. Lett. 2009, 80, 682–693. [Google Scholar] [CrossRef]
- Nakamura, Y. On the urgent earthquake detection and alarm system (UrEDAS). In Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo, Japan, 7–9 August 1988; pp. 673–678. [Google Scholar]
- Allen, R.M.; Brown, H.; Hellweg, M.; Khainovski, O.; Lombard, P.; Neuhauser, D. Real-time earthquake detection and hazard assessment by ElarmS across California. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Horiuchi, S.; Wu, C.; Yamamoto, S.; Rydelek, P.A. Evaluation of the real-time earthquake information system in Japan. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, N.C.; Wu, Y.M.; Shin, T.C.; Zhao, L.; Teng, T.L. Development of earthquake early warning system in Taiwan. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Satriano, C.; Elia, L.; Martino, C.; Lancieri, M.; Zollo, A.; Iannaccone, G. PRESTo, the earthquake early warning system for southern Italy: Concepts, capabilities and future perspectives. Soil Dyn. Earthq. Eng. 2011, 31, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Saita, J.; Sato, T. On an earthquake early warning system (EEW) and its applications. Soil Dyn. Earthq. Eng. 2011, 31, 127–136. [Google Scholar] [CrossRef]
- Hoshiba, M.; Kamigaichi, O.; Saito, M.; Tsukada, S.Y.; Hamada, N. Earthquake early warning starts nationwide in Japan. EOS Trans. Am. Geophys. Union 2008, 89, 73–74. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Kanamori, H. Development of an earthquake early warning system using real-time strong motion signals. Sensors 2008, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Erdik, M.; Fahjan, Y.; Ozel, O.; Alcik, H.; Mert, A.; Gul, M. Istanbul earthquake rapid response and the early warning system. Bull. Earthq. Eng. 2003, 1, 157–163. [Google Scholar] [CrossRef]
- Gasparini, P.; Manfredi, G.; Zschau, J. Earthquake Early Warning Systems; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Wurman, G.; Allen, R.M.; Lombard, P. Toward earthquake early warning in northern California. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Kamigaichi, O.; Saito, M.; Doi, K.; Matsumori, T.; Tsukada, S.y.; Takeda, K.; Shimoyama, T.; Nakamura, K.; Kiyomoto, M.; Watanabe, Y. Earthquake early warning in Japan: Warning the general public and future prospects. Seismol. Res. Lett. 2009, 80, 717–726. [Google Scholar] [CrossRef]
- Zollo, A.; Amoroso, O.; Lancieri, M.; Wu, Y.-M.; Kanamori, H. A threshold-based earthquake early warning using dense accelerometer networks. Geophys. J. Int. 2010, 183, 963–974. [Google Scholar] [CrossRef] [Green Version]
- Böse, M.; Ionescu, C.; Wenzel, F. Earthquake early warning for Bucharest, Romania: Novel and revised scaling relations. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Cochran, E.S.; Lawrence, J.F.; Christensen, C.; Jakka, R.S. The quake-catcher network: Citizen science expanding seismic horizons. Seismol. Res. Lett. 2009, 80, 26–30. [Google Scholar] [CrossRef]
- Clayton, R.; Heaton, T.; Chandy, M.; Krause, A.; Kohler, M.; Bunn, J.; Olson, M.; Faulkner, M.; Cheng, M.; Strand, L. Community seismic network. Ann. Geophys. 2011, 54, 738–747. [Google Scholar]
- Luetgert, J.; Evans, J.; Hamilton, J.; Hutt, C.; Jensen, E.; Oppenheimer, D. NetQuakes—A new approach to urban strong-motion seismology. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2009. [Google Scholar]
- Reilly, J.; Dashti, S.; Ervasti, M.; Bray, J.D.; Glaser, S.D.; Bayen, A.M. Mobile phones as seismologic sensors: Automating data extraction for the iShake system. IEEE Trans. Autom. Sci. Eng. 2013, 10, 242–251. [Google Scholar] [CrossRef]
- Kong, Q.; Allen, R.M.; Schreier, L.; Kwon, Y.-W. MyShake: A smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2016, 2, e1501055. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Kwony, Y.-W.; Schreierz, L.; Allen, S.; Allen, R.; Strauss, J. Smartphone-based networks for earthquake detection. In Proceedings of the 2015 15th International Conference on Innovations for Community Services (I4CS), Nuremberg, Germany, 8–10 July 2015; pp. 1–8. [Google Scholar]
- Tan, R.; Xing, G.; Chen, J.; Song, W.-Z.; Huang, R. Fusion-based volcanic earthquake detection and timing in wireless sensor networks. ACM Trans. Sens. Netw. 2013, 9, 1–25. [Google Scholar] [CrossRef]
- Kumar, S.; Vig, R.; Kapur, P. Development of earthquake event detection technique based on STA/LTA algorithm for seismic alert system. J. Geol. Soc. India 2018, 92, 679–686. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, A.; Murthy, V. Evaluation of seismic events detection algorithms. J. Geol. Soc. India 2010, 75, 533–538. [Google Scholar] [CrossRef]
- Liu, C.; Park, J.-W.; Spencer, B., Jr.; Moon, D.-S.; Fan, J. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope. Smart Mater. Struct. 2017, 26, 105005. [Google Scholar] [CrossRef]
- Hernández-Rojas, D.L.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Escudero, C.J. Design and practical evaluation of a family of lightweight protocols for heterogeneous sensing through BLE beacons in IoT telemetry applications. Sensors 2018, 18, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajinii, H. A statistical method of determining the maximum response of a building structure during an earthquake. In Proceedings of the 2nd World Conference on Earthquake Engineering, Tokio, Japan, 11–18 July 1960. [Google Scholar]
- Kanai, K. Semi-Empirical Formula for the Seismic Characteristics of the Ground; Bulletin of the Earthquake Research Institute, University of Tokyo: Tokyo, Japana, 1957; Volume 35, pp. 309–325. [Google Scholar]
- Lin, Y.; Yong, Y. Evolutionary kanai-tajimi earthquake models. J. Eng. Mech. 1987, 113, 1119–1137. [Google Scholar] [CrossRef]
- Alotta, G.; Di Paola, M.; Pirrotta, A. Fractional Tajimi–Kanai model for simulating earthquake ground motion. Bull. Earthq. Eng. 2014, 12, 2495–2506. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, T.; Liu, G.; Ren, J. Improvement of and Parameter Identification for the Bimodal Time-Varying Modified Kanai-Tajimi Power Spectral Model. Shock Vib. 2017, 2017, 7615863. [Google Scholar] [CrossRef] [Green Version]
- Proakis, J.G. Digital Signal Processing: Principles Algorithms and Applications; Pearson Education India: Delhi, India, 2001. [Google Scholar]
- Clinton, J.F.; Heaton, T.H. Potential advantages of a strong-motion velocity meter over a strong-motion accelerometer. Seismol. Res. Lett. 2002, 73, 332–342. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Clock speed | 32-bit ARM CortexM4 @ 64 |
RAM/FLASH | 256kB/1MB |
BLE distance | 200 m + |
Measurement range | ±2.5 g |
Noise density | 45 μg/ |
Sensitivity | 0.076mg/digit |
Data output | 16 bit |
Sampling rate/Low-pass cut-off frequency | 1100 Hz/200 Hz |
Power consumption (mA) | 14.3 |
Prediction | |||||||
---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type3: Earthquake | Total | % | |||
Actual | Type 1 | MMI-5 | 10 | 0 | 0 | 10 | 100 |
MMI-7 | 10 | 0 | 0 | 10 | |||
Type 2 | MMI-5 | 0 | 10 | 0 | 10 | 100 | |
MMI-7 | 0 | 10 | 0 | 10 | |||
Earthquake | MMI-5 | 0 | 0 | 10 | 10 | 100 | |
MMI-7 | 0 | 0 | 10 | 10 | |||
Total | 20 | 20 | 20 | 60 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, J.; Park, J.; Park, J.-W.; Kim, I.-H. BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification. Sensors 2020, 20, 2963. https://doi.org/10.3390/s20102963
Won J, Park J, Park J-W, Kim I-H. BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification. Sensors. 2020; 20(10):2963. https://doi.org/10.3390/s20102963
Chicago/Turabian StyleWon, Jongbin, Junyoung Park, Jong-Woong Park, and In-Ho Kim. 2020. "BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification" Sensors 20, no. 10: 2963. https://doi.org/10.3390/s20102963
APA StyleWon, J., Park, J., Park, J.-W., & Kim, I.-H. (2020). BLESeis: Low-Cost IoT Sensor for Smart Earthquake Detection and Notification. Sensors, 20(10), 2963. https://doi.org/10.3390/s20102963