Tracking Monochloramine Decomposition in MIMS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Monochloramine Preparation and Standardization
2.3. Instrumentation and MIMS Analytical Conditions
3. Results and Discussion
3.1. Monochloramine Analysis in Water
3.2. Headspace Analysis of Ammonia (NH3/NH4+) and NH2Cl in Aqueous Solutions
3.3. Headspace Analysis of Chlorinated Ammonium Chloride Solutions at Different Cl:N Molar Ratios
3.4. Continuous Desorption of Adsorbed Ammonia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kinani, S.; Richard, B.; Souissi, Y.; Bouchonnet, S. Analysis of inorganic chloramines in water. TRAC-Trend Anal. Chem. 2012, 33, 55–67. [Google Scholar] [CrossRef]
- Kinani, S.; Layousse, S.; Richard, B.; Kinani, A.; Bouchonnet, S.; Thoma, A.; Sacher, F. Selective and trace determination of monochloramine in river water by chemical derivatization and liquid chromatography/tandem mass spectrometry analysis. Talanta 2015, 140, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Sacher, F.; Gerstner, P.; Merklinger, M.; Thoma, A.; Kinani, A.; Roumiguières, A.; Bouchonnet, S.; Richard-Tanaka, B.; Layousse, S.; Ata, R.; et al. Determination of monochloramine dissipation kinetics in various surface water qualities under relevant environmental conditions—Consequences regarding environmental risk assessment. Sci. Total Environ. 2019, 685, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Abarnou, A.; Miossec, L. Chlorinated waters discharged to the marine environment chemistry and environmental impact. An overview. Sci. Total Environ. 1992, 126, 173–197. [Google Scholar] [CrossRef]
- Haag, W.R.; Lietzke, M.H. A Kinetic Model for Predicting the Concentrations of Active Halogens Species in Chlorinated Saline Cooling Waters; A Final Report, ORNL/TM-7942; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1981. [Google Scholar]
- Johnson, J.D.; Inman, G.W.; Trofe, T.W. Cooling Water Chlorination: The Kinetics of Chlorine, Bromine, and Ammonia in Sea Water; National Technical Information Service: Springfield, VA, USA, 1982. [Google Scholar]
- Khalanski, M.; Jenner, H.A. Chlorination Chemistry and Ecotoxicology of the Marine Cooling Waters Systems. In Operational and Environmental Consequences of Large Industrial Cooling Water Systems; Rajagopal, S., Jenner, H.A., Venugopalan, V.P., Eds.; Springer Science Publisher: Berlin, Germany, 2012; pp. 183–226. [Google Scholar]
- Yamamoto, K.; Fukushima, M.; Oda, K. Effects of stirring on residual chlorine during chlorination of seawater containing ammonia nitrogen. Water Res. 1990, 24, 649–652. [Google Scholar] [CrossRef]
- Li, J.; Blatchley, E.R. Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools. Environ. Sci. Technol. 2007, 41, 6732–6739. [Google Scholar] [CrossRef]
- Lee, W.; Westerhoff, P.; Yang, X.; Shang, C. Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis. Water Res. 2007, 41, 3097–3102. [Google Scholar] [CrossRef]
- Louarn, E.; Asri-Idlibi, A.M.; Leprovost, J.; Héninger, M.; Mestdagh, H. Evidence of reactivity in the membrane for the unstable monochloramine during MIMS analysis. Sensors 2018, 18, 4252. [Google Scholar] [CrossRef] [Green Version]
- Shang, C.; Blatchley, E.R. Differentiation and quantification of free chlorine and inorganic chloramines in aqueous solution by MIMS. Environ. Sci. Technol. 1999, 33, 2218–2223. [Google Scholar] [CrossRef]
- Hu, W.-P.; Langford, V.S.; McEwan, M.J.; Milligan, D.B.; Storer, M.K.; Dummer, J.; Epton, M.J. Monitoring chloramines and bromamines in a humid environment using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 1744–1748. [Google Scholar] [CrossRef]
- Soltermann, F.; Widler, T.; Canonica, S.; von Gunten, U. Comparison of a novel extraction-based colorimetric (ABTS) method with membrane introduction mass spectrometry (MIMS): Trichloramine dynamics in pool water. Water Res. 2014, 58, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Allard, S.; Hu, W.; Le Menn, J.-B.; Cadee, K.; Gallard, H.; Croué, J.-P. Method development for quantification of bromochloramine using membrane introduction mass spectrometry. Environ. Sci. Technol. 2018, 52, 7805–7812. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shang, C. Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide. Environ. Sci. Technol. 2004, 38, 4995–5001. [Google Scholar] [CrossRef] [PubMed]
- Weaver, W.A.; Li, J.; Wen, Y.; Johnston, J.; Blatchley, M.R.; Blatchley, E.R. Volatile disinfection by-products analysis from chlorinated indoor swimming pools. Water Res. 2009, 43, 3308–3318. [Google Scholar] [CrossRef] [PubMed]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- ISO 7393-2. Water quality—Determination of Free Chlorine and Total Chlor—Part 2: Colorimetric Method Using N,N-Dialkyl-1,4-Phenylenediamine, for Routine Control Purposes; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Louarn, E.; Hamrouni, A.; Colbeau-Justin, C.; Bruschi, L.; Lemaire, J.; Heninger, M.; Mestdagh, H. Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water. Int. J. Mass Spectrom. 2013, 353, 26–35. [Google Scholar] [CrossRef]
- Lemaire, J.; Thomas, S.; Lopes, A.; Louarn, E.; Mestdagh, E.; Latappy, H.; Leprovost, J.; Heninger, M. Compact FTICR Mass Spectrometry for Real Time Monitoring of Volatile Organic Compounds. Sensors 2018, 18, 1415. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Rosi, M. Gas-Phase Chemistry of NHxCly+. I. Structure, Stability, and Reactivity of Protonated Monochloramine. J. Phys. Chem. 1998, 102, 10189–10194. [Google Scholar] [CrossRef]
- Ricci, A.; Rosi, M. Gas Phase Chemistry of NHxCly+ Ions. II. Structure, Stability and Reactivity of Protonated Monochloramine. J. Phys. Chem 1998, 104, 5617–5624. [Google Scholar] [CrossRef]
- She, M.; Hwang, S.-T. Concentration of dilute flavor compounds by pervaporation: Permeate pressure effect and boundary layer resistance modeling. J. Membr. Sci. 2004, 236, 193–202. [Google Scholar] [CrossRef]
- Davey, N.G.; Krogh, E.T.; Gill, C.G. Membrane-introduction mass spectrometry (MIMS). TRAC-Trend Anal. Chem. 2011, 30, 1477–1485. [Google Scholar] [CrossRef]
- Mitch, W.A.; Sedlak, D.L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ. Sci. Technol. 2002, 36, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Pepi, F.; Ricci, A.; Rosi, M. Gas-Phase Chemistry of NHxCly+ Ions. 3. Structure, stability, and reactivity of protonated trichloramine. J. Phys. Chem. A 2003, 107, 2085–2092. [Google Scholar] [CrossRef]
- Hansen, K.F.; Gylling, S.; Lauritsen, F.R. Time- and concentration-dependent relative peak intensities observed in electron impact membrane inlet mass spectra. Int. J. Mass Spectrom. Ion Process. 1996, 152, 143–155. [Google Scholar] [CrossRef]
- Riter, L.S.; Charles, L.; Turowski, M.; Cooks, R.G. External interface for trap-and release membrane introduction mass spectrometry applied to the detection of inorganic chloramines and chlorobenzenes in water. Rapid Commun. Mass Spectrom. 2001, 15, 2290–2295. [Google Scholar] [CrossRef]
- Pope, P.G. Haloacetic Acid Formation during Chloramination: Role of Environmental Conditions, Kinetics, and Haloamine Chemistry. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2006. [Google Scholar]
- Gazda, M.; Dejarme, L.E.; Choudhury, T.K.; Cooks, R.G.; Mergerum, D.W. Mass-spectrometric evidence for the formation of bromochloramine and N-bromo-N-chlormethylamine in aqueous solution. Environ. Sci. Technol. 1993, 27, 557–561. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roumiguières, A.; Kinani, S.; Bouchonnet, S. Tracking Monochloramine Decomposition in MIMS Analysis. Sensors 2020, 20, 247. https://doi.org/10.3390/s20010247
Roumiguières A, Kinani S, Bouchonnet S. Tracking Monochloramine Decomposition in MIMS Analysis. Sensors. 2020; 20(1):247. https://doi.org/10.3390/s20010247
Chicago/Turabian StyleRoumiguières, Adrien, Said Kinani, and Stéphane Bouchonnet. 2020. "Tracking Monochloramine Decomposition in MIMS Analysis" Sensors 20, no. 1: 247. https://doi.org/10.3390/s20010247
APA StyleRoumiguières, A., Kinani, S., & Bouchonnet, S. (2020). Tracking Monochloramine Decomposition in MIMS Analysis. Sensors, 20(1), 247. https://doi.org/10.3390/s20010247