DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier
Abstract
:1. Introduction
- A deep neural network (NN) based approach is presented which performs the indoor localization based on the features extracted from the magnetic data.
- A soft voting criteria is defined to ensemble the prediction of multiple NNs. All NNs are trained with the same magnetic data to predict the user’s current location.
- The proposed approach is tested with heterogeneous devices including Galaxy S8, LG G6, LG G7, and Galaxy A8 to evaluate the localization accuracy. The results are compared with support vector machines (SVM) and another magnetic localization approach.
- Besides our own collected dataset, the proposed approach is tested on a publicly available magnetic dataset where the data have been collected with a Sony Xperia M2 smartphone.
- The impact of device varying attitude has also been investigated where the device attitude is changed from ’navigation’ to ’call listening’, and ’front pocket’ mode to analyze the localization performance of the proposed approach.
2. Related Work
3. Current Challenges in Magnetic Field Based Localization
3.1. Indoor Infrastructure and Time Variance
3.2. Heterogeneity of Smartphones
3.3. Various Device Attitudes
3.4. Low Strength of the Magnetic Field
4. Materials and Methods
4.1. Features Selection
4.2. Proposed Approach
Algorithm 1 Find user location |
|
5. Results and Discussion
5.1. Experiment Set Up
5.2. Results with Total Magnetic Intensity Features
5.3. Results with Four Elements of Magnetic Data
5.4. Localization Results with Continuous Walk Training Data
5.5. Localization Results with Publicly Available Magnetic Data
5.6. Impact of Various Device Attitudes on Localization Accuracy
5.7. Performance Analysis
6. Conclusions
7. Limitations and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Bahl, P.; Padmanabhan, V.N.; Bahl, V.; Padmanabhan, V. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 26–30 March 2000. [Google Scholar]
- Karimi, H.A. Advanced Location-Based Technologies and Services; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Yoshimura, T.; Hasegawa, H. Comparing the precision and accuracy of GPS positioning in forested areas. J. For. Res. 2003, 8, 147–152. [Google Scholar] [CrossRef]
- Kjærgaard, M.B.; Blunck, H.; Godsk, T.; Toftkjær, T.; Christensen, D.L.; Grønbæk, K. Indoor positioning using GPS revisited. In Proceedings of the International Conference on Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 38–56. [Google Scholar]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003 (PerCom 2003), Fort Worth, TX, USA, 26 March 2003; pp. 407–415. [Google Scholar]
- Ashraf, I.; Hur, S.; Park, Y. Indoor positioning on disparate commercial smartphones using Wi-Fi access points coverage area. Sensors 2019, 19, 4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.; Burgard, W.; Burkhardt, H. Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization. IEEE Trans. Robot. 2005, 21, 208–216. [Google Scholar] [CrossRef]
- Sahinoglu, Z. Ultra-Wideband Positioning Systems; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Bruno, R.; Delmastro, F. Design and analysis of a bluetooth-based indoor localization system. In Proceedings of the IFIP International Conference on Personal Wireless Communications; Springer: Berlin/Heidelberg, Germany, 2003; pp. 711–725. [Google Scholar]
- Papapostolou, A.; Chaouchi, H. Orientation-based radio map extensions for improving positioning system accuracy. In Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly, Leipzig, Germany, 21–24 June 2009; pp. 947–951. [Google Scholar]
- Zou, H.; Lu, X.; Jiang, H.; Xie, L. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine. Sensors 2015, 15, 1804–1824. [Google Scholar] [CrossRef]
- Lui, G.; Gallagher, T.; Li, B.; Dempster, A.G.; Rizos, C. Differences in RSSI readings made by different Wi-Fi chipsets: A limitation of WLAN localization. In Proceedings of the 2011 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 29–30 June 2011; pp. 53–57. [Google Scholar]
- Amini, S.; Homayouni, S.; Safari, A.; Darvishsefat, A.A. Object-based classification of hyperspectral data using Random Forest algorithm. Geo-Spat. Inf. Sci. 2018, 21, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Jalal, A.; Quaid, M.A.K.; Kim, K. A Wrist Worn Acceleration Based Human Motion Analysis and Classification for Ambient Smart Home System. J. Electr. Eng. Technol. 2019, 14, 1733–1739. [Google Scholar] [CrossRef]
- Jalal, A.; Quaid, M.A.; Sidduqi, M. A Triaxial acceleration-based human motion detection for ambient smart home system. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 353–358. [Google Scholar]
- Yu, H.; Wang, J.; Bai, Y.; Yang, W.; Xia, G.S. Analysis of large-scale UAV images using a multi-scale hierarchical representation. Geo-Spat. Inf. Sci. 2018, 21, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Bakli, M.S.; Sakr, M.A.; Soliman, T.H.A. A spatiotemporal algebra in Hadoop for moving objects. Geo-Spat. Inf. Sci. 2018, 21, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Yang, J.; Qiao, Y. Person re-identification across multi-camera system based on local descriptors. In Proceedings of the 2012 Sixth International Conference on Distributed Smart Cameras (ICDSC), Hong Kong, China, 30 October–2 November 2012; pp. 1–6. [Google Scholar]
- Chattopadhyay, C.; Das, S. Supervised framework for automatic recognition and retrieval of interaction: A framework for classification and retrieving videos with similar human interactions. IET Comput. Vis. 2016, 10, 220–227. [Google Scholar] [CrossRef]
- Jalal, A.; Uddin, M.Z.; Kim, J.T.; Kim, T.S. Daily Human Activity Recognition Using Depth Silhouettes and R Transformation for Smart Home. In Proceedings of the International Conference on Smart Homes and Health Telematics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 25–32. [Google Scholar]
- Yoshimoto, H.; Date, N.; Yonemoto, S. Vision-based real-time motion capture system using multiple cameras. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Tokyo, Japan, 1 August 2003; pp. 247–251. [Google Scholar]
- Koller, D.; Klinker, G.; Rose, E.; Breen, D.E.; Whitaker, R.T.; Tuceryan, M. Real-time vision-based camera tracking for augmented reality applications. In Proceedings of the VRST 97 ACM Symposium on Virtual Reality Software and Technology; ACM: New York, NY, USA, 1997; Volume 97, pp. 87–94. [Google Scholar]
- Zhao, W.; Yan, L.; Zhang, Y. Geometric-constrained multi-view image matching method based on semi-global optimization. Geo-Spat. Inf. Sci. 2018, 21, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Jalal, A.; Kamal, S.; Kim, D. Individual detection-tracking-recognition using depth activity images. In Proceedings of the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, Korea, 28–30 October 2015; pp. 450–455. [Google Scholar]
- Berlin, S.J.; John, M. Human interaction recognition through deep learning network. In Proceedings of the 2016 IEEE International Carnahan Conference on Security Technology (ICCST), Orlando, FL, USA, 24–27 October 2016; pp. 1–4. [Google Scholar]
- Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Park, Y. MDIRECT-Magnetic field strength and peDestrIan dead RECkoning based indoor localizaTion. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 October 2018; pp. 24–27. [Google Scholar]
- Ashraf, I.; Hur, S.; Park, Y. BLocate: A building identification scheme in GPS denied environments using smartphone sensors. Sensors 2018, 18, 3862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhang, L.; Liu, Q.; Yin, Y.; Cheng, L.; Zimmermann, R. Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective. IEEE Trans. Multimed. 2017, 19, 874–888. [Google Scholar] [CrossRef]
- Zhang, C.; Subbu, K.P.; Luo, J.; Wu, J. GROPING: Geomagnetism and crowdsensing powered indoor navigation. IEEE Trans. Mob. Comput. 2015, 14, 387–400. [Google Scholar] [CrossRef]
- Pasku, V.; De Angelis, A.; De Angelis, G.; Arumugam, D.D.; Dionigi, M.; Carbone, P.; Moschitta, A.; Ricketts, D.S. Magnetic field-based positioning systems. IEEE Commun. Surv. Tutor. 2017, 19, 2003–2017. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Shafiq, M.; Park, Y. Floor identification using magnetic field data with smartphone sensors. Sensors 2019, 11, 2538. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsdottir, E.L. The Earth’s Magnetic Field. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland, 2012. [Google Scholar]
- Finlay, C.C.; Maus, S.; Beggan, C.; Bondar, T.; Chambodut, A.; Chernova, T.; Chulliat, A.; Golovkov, V.; Hamilton, B.; Hamoudi, M.; et al. International geomagnetic reference field: The eleventh generation. Geophys. J. Int. 2010, 183, 1216–1230. [Google Scholar]
- Li, B.; Gallagher, T.; Rizos, C.; Dempster, A.G. Using geomagnetic field for indoor positioning. J. Appl. Geod. 2013, 7, 299–308. [Google Scholar] [CrossRef]
- Li, B.; Gallagher, T.; Rizos, C.; Dempster, A.G.; Rizos, C. How feasible is the use of magnetic field alone for indoor positioning. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, Australia, 13–15 November 2012; pp. 1–9. [Google Scholar]
- Li, Y.; Zhuang, Y.; Lan, H.; Zhang, P.; Niu, X.; El-Sheimy, N. WiFi-aided magnetic matching for indoor navigation with consumerportable devices. Micromachines 2015, 6, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, I.; Hur, S.; Park, Y. mPILOT-magnetic field strength based pedestrian indoor localization. Sensors 2018, 18, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, I.; Hur, S.; Shafiq, M.; Kumari, S.; Park, Y. GUIDE: Smartphone sensors-based pedestrian indoor localization with heterogeneous devices. Int. J. Commun. Syst. 2019. [Google Scholar] [CrossRef]
- Gu, F.; Niu, J.; Duan, L. WAIPO: A fusion-based collaborative indoor localization system on smartphones. IEEE/ACM Trans. Netw. 2017, 25, 2267–2280. [Google Scholar] [CrossRef]
- Ahmed, A.; Jalal, A.; Rafique, A.A. Salient Segmentation based Object Detection and Recognition using Hybrid Genetic Transform. In Proceedings of the 2019 International Conference on Applied and Engineering Mathematics (ICAEM), Taxila, Pakistan, 27–29 August 2019; pp. 203–208. [Google Scholar]
- Jalal, A.; Mahmood, M.; Sidduqi, M. Robust spatio-temporal features for human interaction recognition via artificial neural network. In Proceedings of the IEEE Conference on FIT, Islamabad, Pakistan, 17–19 December 2018. [Google Scholar]
- Singh, D.; Mohan, C.K. Graph formulation of video activities for abnormal activity recognition. Pattern Recognit. 2017, 65, 265–272. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Ly, N.Q. Abnormal Activity Detection based on Dense Spatial-Temporal Features and Improved One-Class Learning. In Proceedings of the Eighth International Symposium on Information and Communication Technology, Nha Trang City, Viet Nam, 7–8 December 2017; pp. 370–377. [Google Scholar]
- Luo, X.; Tan, H.; Guan, Q.; Liu, T.; Zhuo, H.; Shen, B. Abnormal activity detection using pyroelectric infrared sensors. Sensors 2016, 16, 822. [Google Scholar] [CrossRef] [Green Version]
- Jalal, A.; Kamal, S.; Kim, D. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments. Sensors 2014, 14, 11735–11759. [Google Scholar] [CrossRef]
- Jalal, A.; Kamal, S.; Kim, D. Shape and motion features approach for activity tracking and recognition from kinect video camera. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Gwangiu, Korea, 24–27 March 2015; pp. 445–450. [Google Scholar]
- Liu, M.; Chen, R.; Li, D.; Chen, Y.; Guo, G.; Cao, Z.; Pan, Y. Scene recognition for indoor localization using a multi-sensor fusion approach. Sensors 2017, 17, 2847. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, I.; Hur, S.; Park, Y. The The Application of Deep Convolutional Neural Networks and Smartphone Sensors in Indoor Localization. Appl. Sci. 2019, 9, 2337. [Google Scholar] [CrossRef] [Green Version]
- Al-homayani, F.; Mahoor, M. Improved indoor geomagnetic field fingerprinting for smartwatch localization using deep learning. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Wang, R.; Li, Z.; Luo, H.; Zhao, F.; Shao, W.; Wang, Q. A Robust Wi-Fi Fingerprint Positioning Algorithm Using Stacked Denoising Autoencoder and Multi-Layer Perceptron. Remote Sens. 2019, 11, 1293. [Google Scholar] [CrossRef] [Green Version]
- Bird, J.; Arden, D. Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors [emerging opportunities for localization and tracking]. IEEE Wirel. Commun. 2011, 18, 28–35. [Google Scholar] [CrossRef]
- Galván-Tejada, C.; García-Vázquez, J.; Galván-Tejada, J.; Delgado-Contreras, J.; Brena, R. Infrastructure-less indoor localization using the microphone, magnetometer and light sensor of a smartphone. Sensors 2015, 15, 20355–20372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, H. Using the ADXL202 in Pedometer and Personal Navigation Applications. Available online: https://www.analog.com/media/en/technical-documentation/application-notes/513772624AN602.pdf (accessed on 21 December 2019).
- Barsocchi, P.; Crivello, A.; La Rosa, D.; Palumbo, F. A multisource and multivariate dataset for indoor localization methods based on WLAN and geo-magnetic field fingerprinting. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar]
- Piyathilaka, L.; Kodagoda, S. Gaussian mixture based HMM for human daily activity recognition using 3D skeleton features. In Proceedings of the 2013 IEEE 8th conference on industrial electronics and applications (ICIEA), Melbourne, VIC, Australia, 19–21 June 2013; pp. 567–572. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wu, H.; Pan, W.; Xiong, X.; Xu, S. Human activity recognition based on the combined svm&hmm. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 219–224. [Google Scholar]
Features | Equation |
---|---|
Minimum | |
Maximum | |
Mean | |
Trimmed mean | |
Median | |
Root mean square | |
Standard deviation | |
Interquartile | |
Percentiles (1, 50, 75, 99) | |
Mean absolute deviation | |
Kurtosis | |
Coefficient of variance | |
Shanon’s entropy | |
Skewness | |
Variance |
Features Used | Device | Mean Error | Standard Deviation | 75% Error | Maximum Error |
---|---|---|---|---|---|
Galaxy S8 | 3.02 | 2.61 | 4.00 | 14.55 | |
LG G6 | 3.52 | 3.01 | 4.43 | 16.12 | |
Galaxy S8 | 2.23 | 1.62 | 3.21 | 8.32 | |
LG G6 | 2.52 | 1.65 | 3.55 | 10.44 | |
( Scenario 1) | LG G7 | 2.59 | 1.96 | 3.47 | 9.88 |
Galaxy A8 | 2.78 | 1.83 | 3.75 | 10.48 | |
Galaxy S8 | 2.88 | 2.49 | 3.86 | 12.14 | |
LG G6 | 3.05 | 2.37 | 4.00 | 13.67 | |
( Scenario 2) | LG G7 | 3.06 | 2.37 | 4.05 | 12.93 |
Galaxy S8 | 3.23 | 2.17 | 4.35 | 13.51 |
Device | Mean Error | Standard Deviation | 75% Error | Maximum Error |
---|---|---|---|---|
Galaxy S8 | 2.45 | 2.06 | 3.39 | 13.81 |
LG G6 | 2.85 | 2.19 | 3.94 | 14.57 |
Attitude | Mean Error | Standard Deviation | 50% Error |
---|---|---|---|
Navigation | 2.23 | 1.62 | 1.89 |
Call listening | 7.59 | 5.10 | 6.54 |
Front pocket | 7.04 | 4.68 | 6.16 |
Device | Approach Used | Mean Error | Standard Deviation | 75% Error | Maximum Error |
---|---|---|---|---|---|
Galaxy S8 | SVM | 3.34 | 3.41 | 5.24 | 22.47 |
mPILOT | 2.17 | 1.59 | 3.14 | 7.41 | |
Proposed | 2.23 | 1.62 | 3.21 | 8.32 | |
LG G6 | SVM | 4.93 | 5.23 | 6.11 | 29.90 |
mPILOT | 2.96 | 2.83 | 3.51 | 11.69 | |
Proposed | 2.52 | 1.65 | 3.55 | 10.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, I.; Hur, S.; Park, S.; Park, Y. DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier. Sensors 2020, 20, 133. https://doi.org/10.3390/s20010133
Ashraf I, Hur S, Park S, Park Y. DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier. Sensors. 2020; 20(1):133. https://doi.org/10.3390/s20010133
Chicago/Turabian StyleAshraf, Imran, Soojung Hur, Sangjoon Park, and Yongwan Park. 2020. "DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier" Sensors 20, no. 1: 133. https://doi.org/10.3390/s20010133
APA StyleAshraf, I., Hur, S., Park, S., & Park, Y. (2020). DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier. Sensors, 20(1), 133. https://doi.org/10.3390/s20010133